CHRONOSPHERE » Cryonics Philosophy A revolution in time. Fri, 03 Aug 2012 22:34:48 +0000 en-US hourly 1 Ray Bradbury: When the Writer Mistakes His Books for Himself Wed, 13 Jun 2012 23:47:19 +0000 chronopause Continue reading ]]> By Mike Darwin

On 5 June 2012, the master storyteller and science fiction writer Ray Bradbury died at the age of 91. Some Bradbury’s work, and very nearly Bradbury himself became an iconic part of the culture. His novel Fahrenheit 451, the collection of short stories that became The Martian Chronicles, and especially his superb short stories such as Dandelion Wine, I Sing the Body Electric and There Will Come Soft Rains took him to apogee of SF and fantasy writers in the 1950s and ’60s. There have been many reminiscences of Bradbury on various life extension forums, some by advocates of cryonics and/or radical life extension, such Steve Harris, M.D. and Gregory Fahy, Ph.D. Oddly, these condolences make no mention of Bradbury’s decades long public and not infrequent opposition to human life span extension.

There Will Come Soft Rains, along with I Sing the Body Electric were my introduction to Bradbury, followed a little later by Fahrenheit 451, which I read whilst recovering from a tonsillectomy at age 15 (a very painful procedure when done past childhood). I met Bradbury some years ago, quite unexpectedly, at a social gathering in Los Angeles. The person who introduced us made the grave error of disclosing my background in cryonics and Bradbury was anxious to terminate the encounter as soon as it had begun. Probably even more so than Isaac Asimov, he loathed the idea of cryonics and life span extension. I gained a bit of ground by immediately raising this point, before he could, and our conversation continued long enough for me to get some insight into why Bradbury had such strong negative feelings about extending the human life span. And it was just the human life span he was concerned with – robots, such as the nanny in I Sing the Body Electric could go on forever, and it made no difference to him.

I finally concluded that, like Mother Theresa, Bradbury’s morality was evil incarnate. He opposed vast extension of the human life span not because it would result in stagnation, or social injustice, but rather because it would lead to the diminution or termination of those elements of human suffering and weakness he considered essential to being human. Without death, and forgetting and constantly being “reset” to that fraction of our libraries each human generation might be able to absorb before, in turn, being extinguished, there could be no pathos of the kind that was Bradbury’s stock and trade. Bradbury saw, quite clearly, that practical biological immortality would transform man into something fundamentally different, alien even, from his current state of being and he was deeply repulsed by that. To be human is to be mortal and to suffer and to die and to live out a history of error and folly over and over, indefinitely. A history that would recede into the dim mists of living memory. A history that required the storyteller to shape the critical parables for mankind to live (and die) by. A history that required men like Ray Bradbury. His final remark in our conversation was that he would have immortality through his books which was the only kind of immortality to which men were entitled.

At the end of Fahrenheit, Granger tells Montag the story of the phoenix, the mythical bird that goes through endless cycles of fiery death and resurrections as an allegory to the human condition, noting that men, unlike birds, ought to be able to remember their mistakes and not repeat them (which, alas, they never do). Granger then proposes that the “books” set about building a “gigantic mirror factory” so that mankind can gaze at himself and come to realize the folly of his forgetting, his hubris and his foolishness.

The end result of such literal self reflection would, no doubt, have been either vanity or disgust – not insight into the follies of history. To gain the latter, it is necessary for us to transcend our mortality. We have mastered fire; and in so doing have fouled our planet’s air and water. Because we live only briefly, we have little ability to see the long term consequences of our actions, and we (like all others before us), cannot truly suffer the effects of our ignorance and recklessness through our children. If we are to behave responsibly with respect to the long term effects of our deeds, we must live long enough to experience them firsthand.

Approximately every fifty years, the accumulated wisdom and experience of an entire generation is wiped out. Yes, some tiny fraction of the knowledge can be (and is) captured in books and other ‘media.’ But knowledge is not wisdom; wisdom is a property of the conscious mind imbued with memory and experience. Wiping out all the hard won accumulated wisdom (and in reality most of the real knowledge, in the bargain) of each human generation is incredibly wasteful – and destructive. This was unavoidable in the past, and it was tolerable because we were barely better than beasts, and we played only with mortals’ things. But it is no longer acceptable. Quite apart from the terrible injustice that death represents for the individual, it is no longer a tenable option for us as species. It has become an expense we can no longer pay, a debt we can no longer afford to service.

 The great economic collapses of 1929 and 2008.

Consider this timely analogy. One of the great problems in economies is the loss of institutional memory for infrequent, but disastrous events. Just about the time the last individuals are dying out from the previous round of economic madness and irresponsibility, another round occurs. This timing is not coincidental; you have to live through some kinds of errors and experience them for yourself, before you can avoid them in the future. That’s exactly what a big part of becoming an adult and growing up are all about; everybody knows you can’t tell a child, or a teenager, about ‘responsibility,’ or about being taken advantage of, or about how to manage money wisely. That kind of knowledge comes only through experience. At present, we are manipulating technologies so vast and so powerful that we will get only one chance to get it right (and that only if we are lucky). There will be no forgiveness for playing the technological equivalent of 1929, over and over again, as we have just done now.

Bradbury didn’t understand that, or refused to understand it. While I loved the melancholy of his stories, I came to realize upon meeting him that it was not dissatisfaction with that melancholia that drove their production, nor the hope that mankind would once and forever learn from the mistakes of the Cold War and book burners, but rather, that mankind would go on, mortal, until his end as a species, with only some fraction of his books surviving until that final day.

I was disappointed to meet Bradbury the man, because he was nothing like Bradbury the author, whom I had read and loved. And therein lay another powerful lesson; authors are not their books and books are most certainly not their authors. Ray Bradbury is dead and for the talent lost and the man lost we can justly grieve. However, I believe that in the midst of his warmth and generosity, there was a terrible streak of cruel repression – one which he might well have written about eloquently and movingly, had he only been able to see it and to recognize it for it was.

Much of Ray Bradbury’s fiction is not only brilliant, it is profoundly humane. He had the rare ability as an author to deeply engage our emotions in the service of making us see both the good and the evil in mankind. Fahrenheit was, is, and will likely long remain a deserved touchstone on the evils of censorship and the opportunity for, if not the inevitability of intellectual and moral decline as a result of advances in telecommunications. Nothing in what I write here is meant to in any way diminish that considerable accomplishment.

My points are three. First, to express surprise that no one in the cryonics and life extension communities has noted that Bradbury had been a staunch and public opponent to life span extension and, in particular, to the technologies of cryonics and suspended animation. The second reason is to point out that there can be, and often is, a dichotomy between the fiction writer as a person and the perception of the writer (public and private) created by his works. Third, and last, I want to say that Bradbury was an influential person. Indeed, I consider him one of the most influential writers in my own life. By definition, influential people influence others and I have no doubt that Bradbury’s voiceiferously negative stance on cryonics and life span extension had a (from our standpoint) negative influence on others. In fact, I would argue that the most powerful objections to practical immortality are not the technical ones, but the philosophical, social and moral ones.

Today there are myriad eminently practical technologies that are only minimally exploited, not exploited at all, or completely forbidden. As Peter Thiel has recently observed, most kinds of engineering and practical scientific research have become illegal to do, absent extensive and oppressive governmental control. People may understandably have some sympathy with this, wherein things like nuclear engineering are concerned, but the fact is that social-ethical concerns have slowed and essentially stopped almost all independent biomedical research.

As a practical example, when I was a teenager (and well into my 20s) it was possible for me to undertake animal research in an upstairs storage room converted to a “bio-hacker’s” laboratory and surgery. Nor was I alone; many Science Fair projects of the 1960s and ’70′s involved extensive research on live animals – including drug and transplantation studies, which were mostly conducted on rodents, but also sometimes on dogs. Today, even as an adult, were I to try the same thing I would be carted off to prison (prison, not jail). A bit earlier today, I read a question posted by some hapless investigator on the Gerontology Research Group forum as to whether experiments on Drosophila (fruit flies!) were regulated, and as to whether the creatures must be treated “humanely.” Incredible!

The issue of how laboratory animals are handled is indeed an important one, and not just to the animals, but to us, as well. It is a complex issue and it admits of no easy solutions and it especially admits of no syrupy, knee-jerk sentimentality that invokes outright bans or crushing regulation. It was and is exactly the latter – coupled with the philosophically erroneous position of “animal rights,” that has slowed the pace of biomedical advance to an abysmal crawl when compared with the explosive and stunning progress that has been made over the same interval of time in software, computing power, and consumer electronics. If advances had been half as fast in biomedicine, we’d likely all be “immortal” now.

I have taken the time to get to know a fair cross section of the people who advocate radical (terrorist) action against biomedical researchers in the name of animal rights. Some are idiots and fools. But others are sincere, caring and compassionate people who are certain they are acting from the best intentions and in the best interest of our species. Many of these people are kindly and otherwise decent; and they are certainly people who, in many cases, have achieved good and decent things in their lives. In short, they are not “pure evil.”

Hitler’s secretary, Traudl Junge, knew him as a decent, caring man who was a good employer – someone she found both worthwhile and exciting to work for and with. And, truth to tell, leaving aside his philosophical peccadilloes and a great deal of unfortunate timing, Hitler might well have been a perfectly pedestrian Austrian or German shop keep selling artist’s supplies, or perhaps operating an art gallery, or a photography studio. Neither his anti-Semitism or his twisted political views would have been much out of character for the times. Indeed, some Neo-Nazis and Communists I’ve known have been otherwise very pleasant people. And, truth to tell, I have occasion to deal with such “crazy” people from time to time, as do we all, and as long we steer clear of politics and race, the commercial transactions and the accompanying social banter are rewarding. True, where I can, I try to do business elsewhere. But that isn’t always possible.

Recently, Steve Harris, M.D., wrote in response to my comments about Bradbury:

 “Sure, Bradbury doesn’t mind eternal life for machines, or Martians, or Dead Authors. And I suspect he wouldn’t have minded it for humans, if he could have seen his way to it as he did for the Martians. But he didn’t, that’s all, and he wasn’t an incrementalist and he wasn’t into “Scientism” (as we all are). He saw “the flesh” as permanent for humanity, and death as permanent as flesh, and books and the vicarious experience of horror for the good of the soul, were Bradbury’s best answer to a “human condition” problem that he took as a given, not solvable by technology (certainly not solvable by technology as HE knew it). If some of the writers on this list don’t share Bradbury’s premises from his benighted time, that’s fine. But give the guy a break, okay?”

I wish I could do that. But, the fact of the matter is that “Scientism” or education, or knowledge in or about science, have little to do with whether a person embraces radical life span extension, or not. Twenty four years ago I wrote an article titled The Door to Nowhere about the near simultaneous “deaths” of two very different “Roberts”: Robert Heinlein and a man I’ll call Robert B. Robert B. was a TV repairman who lived a very ordinary life in a manufactured home park in South Florida. He was not highly educated and I doubt that he knew much more about the sciences than Ray Bradbury, and most likely he knew much less. Unarguably, he knew much, much less than Robert Heinlein. The critical difference between the two was that Robert B. had an outlook, a world view, a philosophy and a set of expectations that demanded the pursuit of his personal survival, even at considerable costs in the face of (arguably) overwhelmingly adverse odds. So, whilst Robert Heinlein was being removed to the crematorium (literally), Robert B. was making his way down towards liquid nitrogen temperature (where he remain to this day).

Above left, the science fiction author Robert A. Heinlein and, at right, the cryonaut Robert B.

My point then (and now) is that it was Robert B., not Robert Heinlein who was the authentic adventurer, pioneer and optimist. Henlein wrote eloquently of such characters, but when the rubber hit the road, he chose not to live like them (and yers, he was well aware of cryonics, as is his still surviving SF-writer cohort, Fred Pohl). Many apologies for this decision are, of course possible, and indeed even likely reasonable. Maybe Heinlein just didn’t think cryonics would work. Fair enough, if that was the case. But importantly, unlike Isaac Asimov (who did, in fact, think cryonics might well work), Heinlein did not espouse a philosophy, nor take a position that cryonics, let alone life span extension, were evil, or should be prohibited. Indeed, his fiction treats both technological possibilities in a positive way.

My problem with Bradbury is a fairly abstract one, especially now that he is dead. He seemed a nice enough man the one time I met him, and I had no doubt, then or now, that his convictions regarding the undesirability of life prolongation (which ran to the point of banning it) were both heartfelt and sincere. And, as I’ve previously said, I love much of his fiction and hold it in high esteem. Much of his published work is good work and it deserves to be read until such time as it no longer speaks to any who are alive. I tolerate (and ignore) the crazy and kooky political and social views of many of the people I have to interact with in commerce, and in the business of daily life, because I really have no choice, and much more importantly, because they are not influential. The militiaman, or neolithic fundamentalist-racist, or even the devout Catholic who is a member of Opus Dei who may be my neighbors are of little concern to me if or until they become powerful and influential. There were hundreds of thousands of down and out and embittered anti-Semitic veterans of World War I in Germany in the 1920s, and Hitler was a nobody of no concern until he became a somebody of great influence.

The problem with Ray Bradbury wasn’t his lack of the proper scientific perspective, but rather his active and zealous belief in a philosophical and moral perspective which are anathema to those of us pursuing practical, biological immortality. That doesn’t make Bradbury a “bad or evil person.” But it also doesn’t make him a saint. And what’s more, it behooves us not to let such ideas and such behavior go unremarked upon, especially when they are espoused by influential people of such import as to practically have become a cultural icon. As I said with respect to Robert Heinlein over two decades ago:

“Extraordinary writing skills, technical vision – these will likely be things available to anyone almost for the asking in the future. They are worthwhile things, but they are not core values, not the fundamental things required to enjoy and hold on to life. The other Bob, the one waiting quietly in liquid nitrogen at Alcor, may not have been an intellectual luminary or a great entertainer of the masses as Heinlein was. But he had and still has something Heinlein hasn’t a chance in the world of now: the prospect of immortality in an open ended world of incredible possibilities. For he had the courage and the brains not to merely hear about “The Door Into Summer,” but to actually step through it. “

]]> 5
Semantics and Cryonics Propaganda Wed, 13 Jun 2012 22:04:36 +0000 chronopause Continue reading ]]>
By Mike Darwin
One of the things I hear from time to time is the assertion by some cryonicists that recent advances in mammalian brain vitrification technology have resulted in the brains of cryonics patients being “alive.” While the error is understandable, because under optimum laboratory conditions many, if not most of the cells in such  brains may be viable – recoverable as metabolically active and self sustaining following cryopreservation, that does not equate to brain viability.
Semantics are very important here. “Viably” vitrified brain tissue is not alive, nor is it dead. Rather, it is in a thirds state, that of (true) suspended animation. And it is important to point out that there are a number of different kinds of suspended animation:
crypto- or anhydro-biosis, wherein living systems are rendered into a preserved, inanimate state by dehydration,
ambient temperature vitrification, wherein living systems are solidified and molecularly immobilized by substitution of their water content with an amorphous solid, such as amber,
and estivation, wherein the living system is rendered metabolically quiescent in the liquid state at ambient temperature by the inhibition or inactivation of biochemical metabolism.
The brains of cryonics patients, even if treated under ideal laboratory conditions, are neither alive nor in suspended animation. This is so because they are critically injured in at least these ways:
1) They have large peri-capillary tears and tears in the brain parenchyma/neuropil (tissue) on the microscopic level, ranging in size from a few, to perhaps 10 to 30 microns, scattered throughout the whole of the organ at (perhaps) distance intervals of tens to hundreds of microns. You can see both of these phenomena in the transmission electron micrographs (TEMs) of (optimally) vitrified rabbit brain below:
 Figure 1: At left, above, is vitrified rabbit cerebral cortex showing an intact capillary properly attached to the brain parenchyma (neuropil) next to a micrograph of a brain capillary where the basement membrane has torn away from the surrounding neuropil. These peri-capillary tears are thought to result from dehydration induced by the cryoprotectant agents, not from cooling to vitrification temperature. [Micrograph courtesy of Dr. Gregory Fahy.]
Figure 2: Above, a tear in the neuropil of a vitrified rabbit brain extending perhaps ~30 to 40 microns across. [Micrograph courtesy of Dr. Gregory Fahy.]
It should be kept in mind that these images are 2-dimensional, and thus cannot show the depth of such lesions. To do that, it would be necessary to make serial sections and micrographs of the tissue and perform 3-D reconstruction of the image. If that were done, you might well see something like the Photoshopped image I’ve created below:
 Figure 3: Photoshopped image of a 3-D reconstruction of brain tissue with a peri-capillary tear shown to extend many microns along the length of the capillary.
There is also damage to the molecular structure of some proteins and to the lipid membranes of the cells and the organelles they contain. While these injuries do not render all of the cells in the brain “non-viable” (e.g., unable to recover metabolism upon rewarming), they do render the brain “nonviable” in terms of being able to resume integrated, long term function. Such injuries are “lethal” because they are currently irreversible.
Thus, we have a fourth state: preserved and potentially recoverable.
So, to recap, there are at least four possible states that biological systems can be in:
Alive: functioning and metabolically active.
Dead: Irreversibly non-functional with loss of the necessary structural and/or contextual information required to permit restoration to life.
Suspended Animation: in a state of indefinite and complete biochemical and metabolic arrest, but fully intact and capable of resuming life if the process is reversed.
Potentially Recoverable: damaged to such an extent that external repair will be necessary before life can be restored; such repair may, or may not be possible as a function of technological advance, but in any event, the damage is of a nature or extent that extant biotechnology is incapable of reversing it. Cryonics falls into this fourth category.
It is both misleading and incorrect to equate a (currently) vitrified brain with being alive. It is fair to say that optimally vitrified brains have many viable cells, but that is also true of most cryonics patients frozen under reasonably good conditions.
That having been said, it is very important to point out that vitrified rabbit brains demonstrate far less damage than do frozen brains – in fact, virtually no injury from ice at all. It is also fair to note that vitrified brain slices have been shown to retain long term potentiation, which is a key step in memory formation.
The problem with these arguments is that they are sophisticated, require complex explanations and qualifications, and also require a sophisticated mind to understand them. It would be far easier to just declare that “the brains of vitrified cryonics patients are alive.” Unfortunately, we haven’t earned the right to do that. And perhaps more importantly, such a success is neither vital to the cryonics argument, nor is it ultimately germane, because, by definition, everyone who is placed into cryopreservation is not, and will never be, currently recoverable, because if we could heal them, we wouldn’t need to cryopreserve them in the first place. All cryonics patients, now and forever, face the fundamental uncertainty of whether they can be returned to life (cured). Suspended Animation will make that uncertainty much less daunting, but it will never eliminate it.

]]> 4
In Thy Orisons Be All My Sins Remembered* Thu, 17 May 2012 20:00:14 +0000 chronopause Continue reading ]]> By Daichi Sasaki

EDITOR’S NOTE: The following text has been edited from a machine translation. I have tried to be as faithful to the original as possible. The title is mine – MD

I came to visit the United States, and specifically to visit California, earlier this year. Before my visit I wrote to Mike Darwin and to some others in cryonics to learn where the underground facility was where the Cryonics Society of California (CSC) cryonics patients were found decomposed in 1979. No one could tell me where to find the facility. I went to Oakwood Cemetery in Chatsworth, and inquired of the management as to where the facility had been located. The cemetery management was not of any help and they informed me that, unless I had relatives interred there, I would have to leave the premises.

I returned to the cemetery the next day, this time on foot (without a driver) and spent the day from the time the cemetery opened until nearly sunset looking for the place where the CSC facility had been, but I was unable to find any trace of it. There is nothing there to show where the CSC patients were lost. There is nothing to memorialize their attempt to survive via cryonics. There is nothing to commemorate them, either as individuals, or as tragic reminders to others in cryonics.

Mike Darwin writes about the importance of memory and not forgetting the history of cryonics. He says that lessons from the past must be learned and not forgotten. My point here is that people need help to do this; they cannot do it unaided. They need instructions on how to remember and constant reminders which are enduring.

After much effort, I finally found out where the CSC facility was. I went back to Oakwood Cemetery and there is nothing on that spot – just a bend in the road and grass. This made me very angry and I said to myself, “What is the matter with the cryonicists in the United States that they have no hearts and no sorrow about what happened in this place? How can you remember your history if you never knew it in the first place? How can you learn what you have already forgotten?” This makes me very sad.

Mike Darwin says it must be remembered, but he does not say how to remember it.

When I returned home I continued to think about that unmarked place in Oakwood Cemetery where those cryonics patients were abandoned, and where they lost their lives forever, and I began to make a plan to remember them. I went to Chatsworth to remember and to honor them, and I could not even find the place where they lost their chance at continued life. There must be marker there. There must be a tool to make us remember. So, I have devised a tool for keeping memory alive and for making cryonicists learn this lesson from the past.

My proposal is for a memorial on the spot where the CSC facility is now buried. This tool for remembering will be buried in the earth and it will be unknown and unseen, except by people who know where to look for it. The memorial is level with the earth and buried in it just as were (and are) the CSC cryonics patients. It is sunken in earth and forgotten as they now are, and will forever be, without this tool.


The memorial is an inverted decagonal pyramid placed into earth above vault. Each side of the pyramid is in memory of one of the cryonics patients lost at there. The top opening of the decagon has a surface area of 1.61803399 meters (the Golden Mean) and bottom has a surface area of 0 meters. This makes a catch-basin in which leaves, grass clippings, insects and all other matter, dead and alive, will be trapped and remain. The catch-basin will fill up to the top and become invisible and lost. The names and faces of the lost cryonics patients that are engraved on each facet of the dodecagon will be covered with dead matter and soil.

To stop this from happening, every person who is a true cryonicist must do as I did and go to the Oakwood Cemetery in Chatsworth one time before they too are cryopreserved. They must reach past the metal grate covering the opening in the memorial and remove the dead matter in the catch basin. They must do this to preserve the memory of and to learn the lesson that the mistake at Chatsworth has to teach. They must do this because to be a cryonicist is to have a duty to remember and a duty to learn from past mistakes. It is also required that all cryonicists honor the patients lost at Chatsworth, because in becoming a cryonicist, each person accepts some of the responsibility for the loss of the patients at Chatsworth. Becoming a cryonicist means accepting some responsibility for that terrible mistake and in that way the forgetting is hard. Only if such a terrible lesson is costly and unpleasant will the memory, and the lesson to be learned from it, endure.

Each cryonicist keeps the accumulating debris in the memorial from erasing the memory of the patients who were lost there. It is a task that is unending – and that is as it should be. If we forget those patients we will have forgotten ourselves and we will surely make the same mistake again (or others will make it on us). We must never forget!

* Hamlet: Act 3, Scene 1: In your prayers be all my sins remembered, or remember my sins in your prayers to God, so that I may be forgiven them.


]]> 4
Myth and Memory in Cryonics Sat, 12 May 2012 19:45:41 +0000 chronopause Continue reading ]]> By Mike Darwin

Steven B. Harris, M.D.

In September of 1988, Steve Harris, M.D., published an essay entitled The Day the Earth Stood Still: Cryonics and the Resurrection of the Mythic Hero. It was one of his best in a formidable roster of insightful articles that he wrote dealing with the likely cultural requirements and cognitive limitations that inform humanity’s acceptance, or lack thereof, of cryonics.  I strongly recommend cryonicists read it. Steve’s articles had a great deal of influence on my thinking,  and both Steve and I were, in turn,  influenced by  the philosopher-mythologist-historian Joseph Campbell. I don’t know how Steve was introduced to him, but I first heard of Campbell as a result of the PBS series THE POWER OF MYTH WILL BILL MOYERS, (downloadable here)  which aired in the late 1980s.

I remember breaking out in goose bumps (I have them now) many times during Campbell’s program and, subsequently, when reading his books. His book of the same title as the series is an excellent introduction to his work. I had the same reaction when reading  Steve Harris’ brilliantly insightful articles dealing with issues critical to human perception of, and reaction to cryonics when I read them for the first time in manuscript form, before they were published in Cryonics And I had it again when I read them in “in print” as the final, published product. These works bear reading and rereading and reading again.

The Dead Ant Heap & Our Mechanical Society:

The Return of the Krell Machine:

Will Cryonics Work?:

The Society for the Recovery of Persons Apparently Dead:

Many are Cold But Few Are Frozen:

Frankenstein and the Fear of Science (Lecture), VHS tape:

There are very powerful ideas and insights in these essays which should be a source of influence and inspiration to many more cryonicists, than to those relatively few who have read them, to date.

One of my central points about the reason for the continued “failure” of cryonics, and for its very slow growth, both absolutely and relatively,  is the near total lack of any kind of memory of what has gone before, let alone a sorting out of what part of that history is vitally important to be remembered. It’s as if most cryonicists live only in the present, looking forward to a future exclusively of their own imagining, with just a dim halo of memory extending, perhaps 5 years back, at most.

A few days ago, I had my nth practical example of that. I was contacted by some people interested in establishing cryonics Elsewhere. One of the interesting (and depressing) things they had been told by “cryonics people in the US,” was that it was a “good idea to establish companion for profit and non-profit organizations” to carry out the various functions of the cryonics undertaking with minimal liability.


Maybe that is the best system, but if it is, there is no evidence I know of to support it, and substantial empirical evidence to refute it.

This is an edited version of my response t0 that recommendation:

“I can only tell you what I have observed here over and over again. Maybe you can figure a way around it, or maybe you won’t have the same problems in the first place, owing to cultural differences. I just don’t know.

You will notice that all of the cryonics organizations in the US consist of fully integrated providers. Suspended Animation is the (recent) exception. What’s remarkable about this situation is that it is the polar opposite of what all of us intended when we started cryonics operations here (myself included). There were always paired for profit and not for profit companies, and for just the reasons you’ve stated. CSNY & Cryo-Span, CSC & Cryonic Interment, BACS & Trans Time, IABS & Soma, Cryovita, Manrise & Alcor… And yet there are only single entities around today. Why?

I do not know about your local law, but in the US, it is forbidden for non-profit organizations (NPOs) and for-profit corporations (FPCs) to have interlocking directorates. In fact, it is generally prohibited for corporations related to, or doing business with each other to have interlocking directorates, unless one is mostly or wholly owned by the other, regardless of their status as FPCs, or NPOs. The reasons for this are many and are deeply rooted in corporate law, but mostly can they be reduced to “conflict of interest” issues. In the early days of cryonics, this ban on interlocking directorates was flagrantly disregarded. The inevitable result was that the FPCs completely dominated the NPOs. In fact, FPCs used the NPOs as a convenient shill for doing all the things that were unprofitable, risky, or otherwise not desirable, such as being stuck with the open-ended custody of the patient!

While the initial reason for this was the use of the Uniform Anatomical Gift Act (UAGA) to accept the patients, the eventual reason for it became (obviously), proprietary interest. People in the FPCs got paid for their work (usually in shares in the FPC) and people in the NPO didn’t – couldn’t, in fact. Valuable work, work that would earn shares, got done by the FPCs, and everything else got shuffled off onto the NPOs. You can actually  see this happening at the time, if you take a look at the issues of “Life Extension”/”Long Life Magazine” on the CryoEuro Wiki, because people didn’t talk about BACS, they talked about Trans Time… And where the reward, or the potential for reward exists is also typically where all the time, attention and money will flow.

Eventually, as visibility increased, the state began to menace, and the directorates were fully separated. That’s when all hell broke loose! The people running the NPOs had to be disinterested directors, and they did not stand to make money (or shares), or gain in any way from giving advantage to the FPCs. Contracts, fee increases, and all the other “taken for granteds” between the FPCs and NPOs were now up for debate and consideration. And since they were now two truly separate organizations, jealousy, resentment, and plain old proprietary interest and territoriality took over.

I pretty much thought the FPCs would win, primarily because they did have that huge advantage of proprietary interest on their side. But what I hadn’t figured on was the patients! The NPOs had control of the patients; and it was with the patients that the real loyalties ultimately rested. TT and BACS pretty much destroyed each other. In the case of Alcor, Alcor prevailed, and in the case of CI, well, there was never an issue in the first place, since CI was always an integrated operation. And yet, why this happened remains a mystery to many, even to those who have put some effort into finding out what happened.

In a large, diverse and robust marketplace, commercial service providers servicing NPOs could possibly work. SA may be the first of these, but only time will tell.

However, while cryonics is small and not subject to normal market forces, the two organizations model has not been proven workable. It becomes particularly vicious when there is only one service provider and one NPO, but totally different directors (as the law here requires), because then it becomes like a long-married couple who hate each other, but because of children, fiances and other reasons, cannot divorce. Far from creating the checks and balances it was anticipated to, this set-up created a state of gridlock and animosity. Ultimately, it degenerated to people on both sides screaming that the other was trying to screw them. And since they couldn’t stop dealing with each other and go to the “competition,” it just ground on until there was little or nothing left. That is, in fact, in significant measure, how Alcor was reborn.

Finally, you will encounter this problem: the FPC will be absolutely essential to the NPO, because the FPC will hold all the assets for delivering the up-front (immediately legally riskiest) part of cryopreservation (CP). They will own the equipment, employ the people, own the vehicles…. So the NPO eventually finds itself not just held hostage to FPC , but at risk if the FPC screws up.

I’ll give you a highly personal example. I was a major shareholder in Cryovita, the service provider to Alcor, but Jerry Leaf held most of the shares. Alcor relied on Cryovita completely for rescue and perfusion and there were no alternative service providers available – none. Alcor didn’t own so much as a cannula, or a set of scrub clothes. Cryovita was a shares corporation and the shares were distributed in a complex and potentially problematic way. It seemed possible that if Jerry were to suddenly experience medico-legal death, that the continued smooth functioning of Cryovita could be at risk of being disrupted. That became one of several causes of a major split between Jerry and I, because I realized, as President of Alcor (which I was, at that time), that if Jerry dropped “dead,” Alcor’s ability to deliver CP could be at risk of disruption. Alcor didn’t have cash lying around to go buy all the required equipment in a hurry! It had taken Jerry and me many years to patiently accumulate it, and to do so at well below market rates.

But it was worse than that, because over the years, Cryovita had generated patents, made exclusive agreements, and otherwise done all kinds of normal business things that corporations do. The problem was, all that “stuff” was also needed and used by Alcor! So, I began acquiring those same capabilities for Alcor, which was, of course, a costly duplication of capital equipment and it caused a feeling of resentment in Jerry/Cryovita.

So, what actually happened when Jerry did have a heart attack and was CPed? Well, exactly what I thought might happen, but in a way I never could have imagined. Cryovita did split from Alcor (kindly selling Alcor some of the most critical assets Alcor needed to stay in business), but the people who took Cryovita away were Kathy Leaf (Jerry’s widow), Saul Kent, Paul Wakfer, Brenda Peters and myself – the very people who had been the most ardent advocates of Alcor for so hard and long.

What happened to Cryovita? Well, it morphed in various ways, but today it is known as 21st Century Medicine!

Naturally, this version of events will be strongly biased by my point of view, so I would suggest you ask others and check it out for yourself. Look at the back issues of “Life Extension” and “Long Life” magazine on the CryoEuro Wiki to get a feel for the “Trans Times” of the 1970s and ’80s. Jim Yount, John Day and especially Frank Rothacker of ACS, may also be able to provide you with valuable perspective.”

My guess is that almost all of the newcomers to cryonics over the past decade, or so, have not read any of Steve Harris’ essays. And they clearly know little of the actual history of cryonics, let alone have any distillation (regardless of the direction of its bias) of what is important in that history to remember and act upon.

If you Google “history of cryonics” this what comes up on the first page (and subsequent pages offer no greater resources). Ben Best’s article is actually the most popular (longitudinally). It’s a fine, bare-bones factual narrative. But it is bloodless and lesson-less; it provides no instruction for others striving to create cryonics without recreating our errors. [I want to be very clear here that this is not a criticism of Ben's article: it was not written to be a tutorial on the lessons to be learned from the history of cryonics.]

What makes history both “teachable” and “leanable” is the humanity of it. We are, as Campbell so eloquently said, “story creatures”; we learn through guided narrative informed by the power of the mythic. BACS, TT, CSNY, Cryo-Span, Alcor, Manrise, CI, these entities were created by individual people for very personal reasons, as well as for the visible and easily understood public ones. Most contemporary cryonicists seem to recoil from any consideration of the “messy” and “untidy” aspects of the personal motivations and dynamics that drove (and drive) organizations, in and out of cryonics. And yet, that’s where a lot of the most important reasons and answers are to be found that will lead on to successes, or doom us to repeated failures.


]]> 6
Cryonics: An Historical Failure Analysis, Lecture 2: Inherent Failure Mechanisms and Risks, Part 3 Sun, 29 Apr 2012 11:09:45 +0000 chronopause Continue reading ]]>



Alcor had achieved an exponential rate of membership growth by the time Jerry Leaf was cryopreserved. Since that time, there has been only modest growth of membership and in fact, in the years since 2007, membership growth has flattened.


The growth in the patient population has been similarly stunted with almost all increase being due to the cryopreservation of members, rather than at-need cases. The time when Alcor selected the highest quality at-need cases and delivered state-of-the-art care to those patients has now become a dim memory and, with one exception, the staff at Alcor has no experience with cases where immediate CPS, followed by prompt extracorporeal support, proceeded smoothly and without incident.

While it is easy to see the risks associated with at-need cases, particularly in the absence of careful vetting and strict adherence to predetermined (and protective) acceptance criteria, it is not so easy to see the even greater cost of foregoing them.

The quality of any complex procedure, medical or otherwise, is directly dependent upon the amount of experience staff have in doing it. Even highly trained and skilled personnel benefit from the experience gained by doing large numbers of cases. In fact, in medicine it has been a consistent finding that outcome in terms of morbidity and mortality in areas as diverse as open heart surgery, radiation oncology and HIV management improves steadily as a function of the number of procedures performed, or cases handled annually. The benefit of an increased case load is even more pronounced when the transition is made from a few cases per year to a few dozen per year, or more.

Absent a case load that keeps the cryopreservation team continuously busy, the only way to maintain even a semblance of competence is to carry out a program of animal research using a survival model that employs the same equipment, facilities and procedures that are employed in human cryopreservation cases. Absent this kind of day-in, day-out experience, it becomes impossible for staff to remember (or even know) where supplies are, how to calibrate, operate and troubleshoot equipment, and just as importantly, how to work together cohesively as a team.


The person leading that team and directing that research must be a competent and motivated „mountain climber‟ – otherwise the work will be a meaningless and gruesome exercise that achieves nothing but the demoralization of those participating in it.



Medical malpractice is a pretty common thing and as we have seen iatrogenic deaths are commonplace. That this is so, given the extensive training and mentoring physicians receive, should give us pause for thought. To become a General Practitioner in the UK or the US requires 12 years of postgraduate training. That is a huge commitment in terms of both time and money and it requires substantial motivation over and above the likely financial returns (in the UK or the US). This level of training and commitment act as a human filter – effectively removing many people who are not suited to the task of being physicians either as a result of „defects‟ in temperament or due to lack of intellect or skill.

However, this slide is misleading in that most of the real filtration has already taken place before a student enters medical school, or perhaps I should say more appropriately, is accepted to medical school. Roughly 95% of those who score well on the MCAT (Medical College Admission Test) or the UKCAT (UK Clinical Aptitude Test) and are subsequently admitted to medical school will finish it! Most of the separation of the wheat from the chaff takes place as a result of the MCAT/UKCAT scores and during the admissions process when the complete academic and behavioral profile of the candidate is evaluated.


What this means is that in practice only about 0.01% of the ~12% of graduating secondary school students who say they want to become physicians actually do so. Yet despite this high degree of selection and the extensive and costly training that follows, iatrogenesis is still a leading cause of death in both the UK and the US!

The implications of this for cryonics are pretty straightforward, although still hard to comprehend. In fact, most cryonicists simply refuse to believe what is on the previous slide and the 5 slides that follow.


All of these errors have occurred in the period of 1991 thru the present. Some, such as reversing the arterial and venous bypass lines or pouring sterile perfusate into a feces soiled container before perfusing it through a patient defy understanding even when it is accepted that they actually took place.


As we’ve just seen, as is the case with iatrogenic errors in medicine, mistakes happen even when practitioners are highly trained and carefully vetted. Without exception all of the well respected and highly qualified critical care physicians and surgeons whom I’ve known well have told me that in the course of their careers they made errors that cost patients their lives or resulted in serious and lasting morbidity. Indeed, I’ve made mistakes in caring for patients – the most serious of which involved errors in judgment that resulted in extra minutes of exposure to warm ischemia. In hindsight, both of these errors were easily avoidable by the simple expedient of insisting that reliable, trained cryonics organization personnel stay with the patient continuously after the start of Standby – regardless of how uncomfortable or problematic that might be for the family so long as our ability to provide Standby for the patient was not compromised.


The issue here is not that errors were made, but rather the underlying reasons, the frequency and the repetitiveness of the errors. Because of the enormous surface tension of water any air bubbles present in blood that are larger in diameter than the capillaries act as obstructions, or emboli. Thus, any air introduced into the arterial circulation of a patient receiving extracorporeal treatment will result in blockage or embolization of the arteries supplying the tissues with blood. Depending upon the amount of air and the area it embolizes, “pumping air” will result in either serious injury or death.

There is an old saying amongst perfusionists: “There are two types of perfusionists: those who have pumped air (into a patient‟s circulatory system), and those who will.” Particularly in the days before microbubble detectors with automatic interrupts to shut down flow and clamp the line supplying blood to the patient were developed and put into universal use, it was typically only a matter of time until any given perfusionist made a mistake that resulted in air being perfused into a patient. This might happen once in the course of a 20 year career during which time thousands of patients would have been perfused for an aggregate of tens of thousands of clinical hours.


It should also be understood that this aphorism includes incidents where introduction of air into the patient‟s circulatory system was arguably unavoidable. Here I‟d like to speak from personal experience. For about 8 years I was a hemodialysis technician both in the outpatient and acute care (ITU) setting. During that time I „pumped air‟ once. In this photo you see me doing hemodialysis in 1978 in Indianapolis, IN.

Microbubble detection equipment was available at that time, but not used at the institution where I worked. If you look at the schematic of the extracorporeal circuit used in dialysis you‟ll note that the leg of tubing connecting the patient‟s arm (artery) to the pump will be under negative pressure with respect to the atmosphere. In order for ~250 ml/min of blood to be withdrawn from the small caliber radial artery it is necessary to “suck” on the vessel. A consequence of this is that if there are any holes – even ones too tiny to see – in the tubing between the artery and the pump raceway air will enter. The dialyzer is inverted to serve as a bubble trap and there is yet another bubble trap before the blood is returned to the patient.

However, in the event the breach in the tubing is very small the resulting bubbles are microscopic and remain suspended in the blood even as it passes through the dialyzer and the bubble trap. Fortunately, in dialysis, we are returning blood to the venous circulation as opposed to the arterial circulation and that means that we have another safety feature – an air bubble filter in the form of the lungs. In the case I‟m discussing here there was a manufacturing defect in the arterial tubing set such that where the blood conducting tubing from the patient was joined to the pump raceway there was an incomplete seal. While the defect was invisible to the eye it was of sufficient size to allow the creation of a steady stream of microbubbles.

Approximately an hour into the treatment my patient began to complain of back pain and shortly thereafter shortness of breath (SOB). I rechecked the composition of the dialysate (blood washing solution) and checked the integrity of the circuit and found nothing amiss. However, as the back pain and SOB increased in severity I became extremely concerned. I realized that these were symptoms of micro-air embolism and I got a flashlight and carefully examined the tubing carrying blood back to the patient.

There was a barely visible fine whitish line at the top of some of the tubing. This was an accumulation of microbubbles that had risen to the top of the blood flowing through the tubing. The patient was immediately removed from the machine and recovered uneventfully and with no lasting harm.

Interestingly, it took the deaths of two patients from air embolism at that institution before ultrasonic air bubble detectors were purchased and added to the dialysis machines.


At left is the Travenol RSP dialysis machine that I began my career with and at right is a contemporary, highly automated hemodialysis machine. There are bubble traps on both the arterial and venous legs of the circuit and, of course, sophisticated ultrasonic microbubble detectors which will shut down the pumps and clamp the lines in the event air in the blood is detected. Additionally, these machines mix the dialysate in real time and ensure it is safe, calculate and implement water removal from the patient and otherwise carry out a myriad of tasks we never dreamed would be possible to „automate‟ in 1978.

Most of these advances came at the price of injury or death to patients who were treated with earlier generations of less sophisticated equipment. In 1978 universal chronic hemodialysis was only 6 years old in the US and I worked in one of the pioneering units making the treatment available to hundreds of patients who previously would have died. While some of the errors and shortcomings of that program were avoidable – many were not – they came as part of the price tag for implementing a then new and demanding technology on a scale previously undreamed of.


I understand errors and I understand their increased frequency and probable severity when implementing any complicated new technology. However, that is not the kind of failure I‟m talking about here in cryonics. The errors listed in these slides are not occasional but rather have become routine. Many are so base that they rise to the level of uncaring negligence.

Consider, for example, the case where a patient frozen to dry ice temperature was removed from dry ice storage and packed in water ice for air shipment to the cryonics facility because of airline restrictions on the amount of dry ice that could be used to refrigerate the patient in transit. Obviously, the patient thawed out before arriving at the cryonics facility and had to be refrozen. That means that tissue ultrastructure that was compressed and fragmented by initial straight freezing (but ostensibly locked in place by ice) would be returned to an aqueous and diffusible state – indeed a state characterized by intense fluid turbulence and “stirring” as concentrated pools of electrolyte diffused and re-equilibrated with the large masses of nearly pure water created by melting ice crystals!

When “average” cryonicists with no technical background or training are told that an “experienced” cryopreservation team leader took a patient out of dry ice and packed him in water ice they are uniformly appalled. Most cannot even understand how or why such a decision would be made by anyone, let alone a highly experienced cryonics caregiver. The same is true of many of the other errors just discussed.

But what is perhaps most shocking and seemingly inexplicable is the complete absence of any visible emotional reaction to these errors. When I discovered microbubbles in the venous return line of the patient I was dialyzing I had an immediate and strong reaction of fear and anxiety bordering on terror. Was the patient going to be all right? Had any permanent harm been done? Next came a wave of dread and worry that I had not delivered good care. Was there something I could have or should have done to prevent the injury to the patient? Could I have detected the problem sooner and acted to prevent some of the pain the patient experienced? With years of experience in medicine I’ve come to understand that this kind of emotional response is both normal and healthy. Strong feelings of discomfort in such situations are an essential part of not repeating the error. This empathetic and self critical emotional response to iatrogenic events seems to be completely absent in an increasing number of cryonics caregivers.



As it turns out, I was not alone in having noticed this phenomenon. Aschwin de Wolf, then employed at Suspended Animation, Inc. in South Florida, was observing the same kind of behavior in a range of settings within the cryonics community. We both found it puzzling to the point of incomprehensibility that people who were delivering care to cryonics patients, in some cases medically trained professionals, could be so indifferent to errors that would, in a conventional medical setting, be career ending or at very least result in costly and traumatic litigation.

This phenomenon was most pronounced in non-cryonicist medical and technical professionals who had been hired to deliver care to cryonics patients. Superficially these individuals seemed to be competent and caring, but a closer examination revealed this to be anything but the case. This was especially surprising to me because I had hired and worked with non-cryonicist medical professionals in the past and had never encountered behavior even remotely like that which Aschwin first identified. In my correspondence with Aschwin I likened such individuals to the “Pod People” in the novel and films Invasion of the Body Snatchers.


While we speculated as to the possible motivation such people might have in becoming and remaining involved in delivering cryonics services (financial gain aside) we did not have to speculate as to what constituted a “Pod Person” in cryonics.


I want to credit Aschwin with first articulating most of these characteristics. He put into words things which I had observed myself, but had not fully understood and he identified a number of traits which I had not (at that time) observed myself. Since he was a cryonicist and he was in intimate contact with a culture of non-cryonicist “employee professionals” he was uniquely situated to observe and understand what was going on.


What he discovered was that people who are not cryonicists, and who are not selected and mentored to hold the values of people who are, behaved with uncaring indifference towards their patients. Not infrequently they actually held cryonicists in contempt considering them “chumps” or “fools” who are tilting at windmills while being consumed with an unnatural and cowardly fear of death.

It seems likely that these people are, in effect, recruited from and filtered out of the larger population of caring and empathetic health care providers and professionals. Absent a cohesive program of instruction and mentoring coupled with meaningful and results-driven day to day activity it would be difficult for anyone, cryonicist

or not, to remain engaged and committed to such a job. More to the point, few if any truly competent and caring persons (professional or otherwise) would accept and remain in a job where there was no “real” day-to-day work, no leadership, and no sense of mission or accomplishment. The kind of people who stay in such a position – especially given their active contempt for their employers and patients – are not psychologically healthy and are certainly lacking not only in compassion, but in work ethic.

Such “sterile” cryonics service operations led by people who lack vision, passion and commitment to cryonics themselves become highly efficient recruitment facilities for individuals who are, at best, borderline sociopaths.


In considering the history of cryonics it became all too apparent that the existence of Pod People was by no means a new phenomenon. As many people in cryonics over the years have observed, cryonics is a magnet for frauds and charlatans. Important extensions to that observation are that the majority of these individuals are also sociopaths and that they are routinely placed in positions of power by cryonicists and cryonics organizations.

This was true in 1966 when Robert Nelson arrived on scene and it has remained the case over the course of the subsequent four decades. The Olga Visser episode is only the most public of many, many other situations where deeply disturbed or frankly sociopathic individuals have been placed in positions of power and authority in cryonics, often within weeks or months of arriving on the scene!

Charles Platt chronicled the Visser saga very well:, and I excerpt it only briefly here:

On October 9th, 1995, readers of the sci.cryonics Usenet news group found themselves confronted with a strange report quoted from the South African Sunday Times. Supposedly, a 37-year-old cardiovascular perfusionist named Olga Visser had developed a new cryoprotectant that would enable human hearts to be frozen with virtually no damage, opening up exciting possibilities in the field of transplants, where organs usually have to be utilized within several hours after removal.

According to the Times Ms. Visser had started her cryoprotectant research two years previously when she helped to establish a heart-valve organ bank. Since valves can be cryopreserved using DMSO, she saw no reason why she shouldn’t be able to freeze whole hearts as well. Undeterred by her lack of knowledge of cryobiology, she consulted some experts, read some journals, and formulated her own cryoprotectant.

When she applied it to a pig heart, she reported “no damage” after the heart was rewarmed from liquid nitrogen. She described similar success with human heart tissue. Finally, “a rat heart was frozen, unfrozen, and then warmed by a special process–and started beating.

On September 8th an astonishing press release was issued jointly by Robert Ettinger, president of The Cryonics Institute (CI), and Steve Bridge, president of Alcor Foundation. Apparently Ettinger had been in discreet contact with Ms. Visser earlier in the year, had satisfied himself that her work was genuine, and then contacted Alcor.

The two groups formed an unprecedented secret alliance, contributing money to Ms. Visser’s research and ultimately flying her to Alcor’s facility in Scottsdale, Arizona. From August 30th through September 4th she demonstrated her experiment to Ettinger, Bridge, and several officers and directors of Alcor. She also gave CI and Alcor an exclusive license to use her present and future technology for cryonics applications.


Ultimately, Visser was shown to be at best a misguided incompetent, and at worst a calculating con artist. When her „novel cryoprotectant‟ was put to an objective test at Alcor‟s facilities in February of 1997, it failed utterly to protect rat hearts against freezing. The net financial hit cryonics, including licensing fees paid to Visser, air fare, equipment purchases, and contributions to support her research was estimated by Alcor‟s then President Steve Bridge to be ~ $50K. Charles Platt sums it up aptly:

Olga Visser’s brief passage through cryonics could still turn out to be a positive, salutary event if it reminds us to be more circumspect in the future. The next time a character out of a Heinlein novel turns up with a secret formula to fix our deepest fears, we may be a little less willing to pay cash for the recipe. We may even be a little more tolerant of the smart-asses who insist on reminding us that death is not an easy adversary, human biology is infernally delicate and difficult to preserve, and scientific rigor is a fundamental necessity, not a tiresome detail.


Why this happens is not much of a mystery when it is examined in the context of other disciplines that command power over and control of peoples‟ lives. Medicine is not more overrun with psychopathic quacks than it is only because there is a profession of medicine, and there are also vast bodies of regulation and law with serious penalties attached, that govern its practice. Cryonics lacks all of these safeguards. Imagine, if you will, what the situation would be if such psychopaths were empowered to fly airplanes, captain ships, or design large, heavy structures such as multi-story buildings, bridges and dams? Indeed, when such people do succeed in occupying these positions disaster is the inevitable result.

Absent these controls, both internal and external, cryonics will continue to fall prey to quacks, frauds and most dangerously, sociopaths seeking positions of perceived psychological power and control with the bonus of being increasingly well paid for indefensibly careless and sloppy work.


Remember my example of repetitive iatrogenesis associated with ascites? Just a few weeks after I gave the first version of this lecture in 2008 it happened yet again, this time to cryonics pioneer (and my personal mentor), Curtis Henderson. See :


I am a deeply committed and seasoned veteran of cryonics and I am telling you, without hesitation, that what happened to Curtis had a devastating impact on me. Anyone with medical sophistication who reads those two case reports will most likely just walk away and dismiss cryonics as perhaps an interesting idea with some potential – but clearly not one whose time has not yet come.



Finally, how do we explain the actions of people in cryonics who are sincere and committed cryonicists and yet who take on technical tasks that are beyond their knowledge and skill sets with terrible results? Much of what happened to Curtis Henderson, particularly with respect to the errors made which prevented him receiving effective cryoprotective perfusion, fall into this category.

I believe the explanation lies in something called the Dunning–Kruger Effect (DKE) The DKE was put forward in 1999 by Justin Kruger and David Dunning and it posits that unskilled people make poor decisions and reach

erroneous conclusions, but their incompetence denies them the meta-cognitive ability to realize their mistakes. Thus, the unskilled suffer from an illusion of superiority, rating their own abilities as above average and much higher than they actually are. This leads to the situation in which less competent people rate their own abilities higher than more competent people.


It also explains why actual competence may weaken self-confidence. Competent people often falsely assume that others have an equivalent understanding and degree of skill or competence. A very simple and pithy way to sum up the DKE was put to me by a Russian cryonicist in an elevator at Birkbeck College: “We are so ignorant that we do not even know what we need to know, or what we don‟t know that we don‟t know – and that is a very dangerous situation indeed.”


The moment at which I first truly understood the role of the DKE in causing technical mayhem in cryonics was actually documented by a journalist doing a story on the Cryonics UK (CUK) group at one of their meetings, held in Brighton, in the fall of 2009. I had met the new leader of the group the year before, and was more than a little surprised to hear him dismiss the Alcor ATP in-field cardiopulmonary bypass system as being “simple to operate and something any mortician would be capable of immediately mastering.” When I incredulously asked if this young man had ever actually seen the ATP, he replied that he had and that it was “just a box with tubes going in and out of it.” I wasn’t the only one who was surprised at this assessment: there was a professional perfusionist in the room from a prestigious UK hospital, and he also (to put it mildly) took considerable issue with this assertion.


A year later I was having much the same discussion with what constituted virtually all of the technical people in the CUK group. After much heated and futile discussion, I proposed that rather than argue about it, they simply get the equipment and simulate putting a patient on bypass starting from the time pronouncement had occurred. At this point, I think it best to let the newspaper account pick up the narrative:

Tim put any doubts to the back of his mind. He’s raring to go. “There’s a patient on the table dying. Hurry up, Darwin says.”

But, of course, the patient is imaginary. Tim takes the lead, explaining the ins and outs of the tubing to his less experienced fellow travellers. Meanwhile Mike Darwin watches, arms crossed reprovingly, his concern for the patient growing by the second.

“Right, I started timing you three minutes ago,” he says.

A good few minutes later Tim and his not-so-crack team are still working out where the red and blue bits plug into. “The only thing that goes wrong is if you switch it on without all the bits plugged in. It doesn’t like it and it has been known to go bang,” he says cheerily.

Darwin can’t contain himself. “If I had that kit here, I’d be scared shitless. Shitless. There are some critical things wrong with the setup of that circuit.” He tells the team they have made so many mistakes the patient would have suffered irreversible brain damage by now. Darwin suggests technology has regressed since he was in his cryonic prime 20 years ago.

But the water is pumping through the system, and Sinclair’s team are fully focused on saving their imaginary patient. Whatever Darwin tells them, they believe they are ahead of their time, not behind it.

I will add one thing that the reporter didn‟t because he had left the room to photograph some of the other CUK members before he lost his light to the setting sun. And that is that the venous blood reservoir bag in the circuit of the ATP exploded due to a misplaced clamp. The reporter apparently missed the timid request made to the meeting‟s hostess, Sylvia Sinclair, for a mop and towels to clean up the water that was all over the kitchen.

While it is true that cryonicists often have no choice but to undertake to provide and deliver care for themselves, it is equally true that they should not attempt to do so in ways that make the situation worse for the patient than had they taken a simpler approach that was, in fact, within their ability to master.

I had spent most of that day at the meeting trying to convince the CUK group that rather than the ATP, what they really needed was to use a simple, inherently „safe‟ open circuit system open circuit system equipped with a microbubble detector and auto-line clamp, to start cryoprotective perfusion as soon as was logistically feasible and to follow that with cooling of the patient to dry ice.

My lack of success in persuading obviously sincere and concerned cryonicists to undertake a course of action that was at once simpler, easier, much less costly, and vastly more likely to benefit the patient speaks to the power of the DKE and to the over-optimism and lack of realism that is endemic to cryonicists, the same over-optimism and lack of realism that makes them easy prey for con men and sociopaths.

End of Inherent Failure Mechanisms and Risks and of Lecture 2


]]> 3
Cryonics: An Historical Failure Analysis, Lecture 2: Inherent Failure Mechanisms and Risks, Part 2 Wed, 25 Apr 2012 08:56:57 +0000 chronopause Continue reading ]]>

By Mike Darwin




In January of 1980 I had the good fortune to perform two human cryopreservations back-to-back with Jerry Leaf (then associated with Trans Time) in Southern California. Jerry and I quickly realized that we shared a common vision for cryonics. We undertook to establish that the use of best practice in relevant areas of medicine be applied to cryopreservation cases and we sought to validate and master each biomedical facet of cryonics stabilization and cryoprotective perfusion and cool down procedures.


We began a vigorous program of research to validate each step of the procedures we were applying to human patients, starting with cardiopulmonary support, blood washout and induction of ultraprofound hypothermia. We believed that by mastering these procedures and, where possible, mastering them reversibly (i.e., recovering the test animal alive and well) we would not only gain invaluable skills, but also uncover serious errors and shortcomings in our procedures – errors and shortcomings not possible to detect by armchair theorizing.

This proved to be the case in spades. It took many attempts before we could reliably recover dogs from 4-5 hours of asanguineous perfusion at 5oC. And it was to take the better part of a decade before we were able to recover dogs following ~16 minutes of global, normothermic ischemia. In fact, Jerry did not live to see this accomplished.


An unexpected result of this research work was that a core of highly skilled cryonics personnel was created. The complexity and long duration of the experiments forced people not only to hone their individual skills, but also to work together seamlessly as a team. Survival animal research also resulted in expanded documentation and training, as well as in the beginning of the establishment of an institutional culture of professionalism and competence.


Research was also undertaken to determine to what extent our protocols for cryoprotection and freezing were conferring protection and causing injury. This work definitively characterized the nature and extent of cryoinjury using 4 M glycerol as the CPA and uncovered the problem of fracturing in tissues and organs cooled to below the glass transition point [1] Tg of the cryoprotective solution: http:



High quality promotional literature, educational materials, and scientific publications were consistently produced and the use of the words death and dead in reference to cryonics patients was abandoned, correcting the semantic imprecision that had so handicapped cryonics since its inception. And something else began happen that was quite remarkable. Despite the fact that Alcor was very low profile with respect to the media, we began to grow. In fact, cryonics began to grow again after over a decade of near total stagnation that was the legacy of the devastating hit its reputation had taken after Chatsworth.


Because of our professional and scientific approach to cryonics we attracted the interest of important scientists and theorists far removed from our own discipline. In March of 1984 a manuscript was sent to my attention at Alcor entitled, The Future by Design. That manuscript was to become the book the The Engines of Creation and the man who sent it to me and to others at Alcor for comment and review was its author, Eric Drexler.


The ideas of nanotechnological repair and rejuvenation, and of the information-theoretic criterion for death, were introduced and vigorously promoted via both in-house and media venues.


Immediate post-arrest, in-home stabilization and cooling of patients, coupled with pharmaco-protection of the brain against ischemia-reperfusion injury, followed by blood washout in a mortuary and rapid transport to CPA perfusion facilities became routine.


The feedback we received from ongoing systematic and broad bandwidth data collection yielded new insights, allowing us to vastly improve the quality of care we were delivering. By the simple expedient of monitoring patients‟ temperature descents we were able to more than triple the rate at which patients were being externally cooled during Stabilization and Transport.


In-home extracorporeal support followed by blood washout (with external CPS as a bridge to cardiopulmonary bypass) became routine in hospice cases. Along with this technology sophisticated mechanical CPS (active compression-decompression high impulse CPR (ACD-HI-CPR) coupled with cold fluid peritoneal lavage greatly improved the post arrest patient cooling rate and reduced ischemic injury.


By continuing to collect data and do research we were able to further increase patient cooling rates to ~0.5◦C min for the first 30 min of CPS!


We also discovered that we could detect when cerebral perfusion failed during CPS by continuously recording temperature descent data from multiple sites in the patient. The abrupt leveling-off of the tympanic cooling curve shown in this slide indicates the point where cerebral perfusion during closed chest (mechanical) CPS was lost. The blue arrow indicates the point where effective cerebral perfusion (and thus cooling) was re-established after the start of cardiopulmonary bypass.



And then, on 10 July, 1991 Jerry Leaf experienced sudden cardiac arrest and was cryopreserved. Jerry was the lynchpin that held the diverse interests and personalities together that comprised Alcor.

One unappreciated consequence of his sudden and unexpected cryopreservation was the impact the absence of his quiet authority and enormously stabilizing influence would have on the various strong personalities in Alcor, and on their diverse interests and objectives towards Alcor in particular, and on cryonics as a whole. Additionally, Jerry‟s control over the medical and surgical service delivery component to Alcor, via his Cryovita Laboratories, Inc., provided a powerful balancing check on internal power politics.

Thus, Jerry‟s absence critically destabilized the leadership dynamics of the organization.


The final blow to the third era of cryonics was the coming of the “tyranny” of Nanotechnology (NT) and the Singularity about which I‟ll have more to say later in these lectures.


How and why did this happen? How did Alcor go from in-home cardiopulmonary bypass to a state where patients count themselves lucky if they even receive prompt heart-lung resuscitator (HLR) support and get packed in ice?


It happened because small organizations are shaped by the personalities of the 2 or 3 people who found and operate them and because creation of a viable institutional culture requires at least one generation (~21 years) of stable, uninterrupted mentoring, and a solid base of practitioners (6-12 people).

If death or loss of emerging professionals destroys the developing culture of professionalism, then the whole system collapses, and usually any effort to recover lost quality and competence must originate outside the failed system (and away from the hard core of the well entrenched institutional cultural paradigm that will have developed in its absence).


It is important to understand that the practice of a scientific and medical model based approach to cryonics cannot be achieved by the simple expedient of finding and recruiting medical professionals or medically qualified technical specialists such as paramedics, perfusionists, physicians or nurses to “do the job” of delivering cryonics patient care. Few of you here today would presume that a General Practitioner could competently perform as a neurosurgeon – or even that a psychiatrist could pinch hit for one – even though both of latter are specialists in treating the same organ – the brain.

While the professional practice of cryonics requires a deep and interdisciplinary knowledge of medicine that is not enough. It requires much additional knowledge and training which is not available at university, nor unfortunately, in any structured form at this time. Perhaps more importantly it requires the skill-set and mindset of a highly motivated researcher knowledgeable about cryonics and capable of both asking and answering the right questions. These kinds of individuals are almost always produced by an institutional culture that mentors and motivates, as well as teaches and instructs. Absent that, they are very rare in any discipline and have been especially scarce in cryonics due to its small size and its historically bad public image and scientific reputation.

Professionalism is, at its core, a result of people who care deeply about what they are doing and genuinely believe that their art and science is making a difference and is in some way deeply transformative (or even revolutionary) with respect to the world as a whole. I suppose the most direct, if not the most elegant way to put this, is that to do cryonics well you must love cryonics – love the practice of it – not just the idea of it. That alone is not sufficient, but when coupled with capability and competence, it is the minimum that is required.


This is a very hard concept to communicate. Perhaps it can best be conveyed by analogy. The business of climbing a mountain is deceptively simple and consists of walking, climbing and crawling all of which are basic if not intrinsic human skills. However, if we consider what is required to climb a very tall peak, such as Mount Everest, we will soon realize that a great deal more is required than the basic motor skills I’ve just listed. The extremes of temperature and the scarcity of oxygen make it a formidable technical challenge, and what‟s more, a truly awesome biomedical one. All kinds of knowledge and skills both sophisticated and subtle are necessary.

But beyond the purely technical, anyone who would summit Everest must have an astonishing emotional

commitment to the task as well as incredible fortitude and strength of will. It is a horrendous effort and it is not only not for the faint of heart, it is not for anyone who lacks deep commitment to the task. A profession is very much like the sport of mountain climbing. Most of its practitioners will spend all of their professional lives summiting well trod and fairly mundane peaks and guiding others to do the same. A few will summit difficult peaks and in so doing add some small measure of knowledge to the craft. Only a very few will try to go where no others have gone before and do so under the most dangerous and demanding conditions. These individuals are extraordinarily rare and they invariably found or define the professions they practice.

So, while it is possible to train many people to climb mountains, and even to teach them the technical skills required to summit Everest or k2, it is not possible to give them the drive, the stamina and the passionate desire that are also required (at least at this time and with currently available technology).

End of  Inherent Failure Mechanisms and Risks, Part 2


[1] The glass transition point is the temperature at which a liquid becomes a glass – or in other words – become a solid by getting thicker and thicker as it is cooled without undergoing freezing. Frozen tissues impregnated with glass forming cryoprotectants such as DMSO or glycerol will be part ice and part glass. The more of the tissue in the glassy or vitrified state the more it will be crack or fracture when cooled below its glass transition point.

]]> 0
Cryonics: An Historical Failure Analysis, Lecture 2: Inherent Failure Mechanisms and Risks, Part 1 Sun, 22 Apr 2012 09:03:23 +0000 chronopause Continue reading ]]> By Mike Darwin




As I said in the previous lecture, the literature produced by CSNY created an impression of competence and of the presence of a solid organization.

After I had been involved in cryonics for a little over a year I began to hear rumors that CSNY was not being run honestly and that, in particular, the patients were not being
stored submerged in liquid nitrogen and that their heads and upper bodies were well above dry ice temperature.

There were other rumors and accusations as well. The source of these turned out to be Robert Nelson, and after a great deal of difficulty I managed to speak with him by phone.


Nelson.s charges prompted me to call Curtis Henderson and to confront. him with Nelson’s accusations. Henderson.s response was simply to invite me to come and see for myself. He explained that it was impossible to answer accusations of the kind Nelson was
making in any meaningful way short of seeing first-hand what conditions were and spending time with the people to whom I had entrusted my life. I was 14 years old at that
time and I doubt very much if Curtis expected me to take him up on his offer – even though it was clearly sincere.


However, that is exactly what I did. I took a part time job to pay for my plane ticket and I showed up on CSNY’s  doorstep the summer after that phone call.


The image of solidity and professionalism projected by CSNY.s literature was tempered substantially by my having visited CSNY during the summers of my 14th and 15th years (yes, I went back). I was well aware that the storage facility was small and that the resources of the organization were minimal. For that reason, and because of the geographical distance, I began to accumulate the equipment and supplies required to carry out cryoprotective perfusion and cooling to dry ice temperature. I also began efforts to recruit others into cryonics.

By late 1971 I had acquired all the equipment and chemicals I believed were needed to carry out the pre-liquid nitrogen phases of cryopreservation. One of the most costly items, and one which I had to purchase new, was a thermocouple thermometer, pictured sitting atop cases of Ringer.s solution and indicated by a red arrow.

By 1972 the war of words between CSC and CSNY had reached fever pitch. One of the charges being made by CSC was that Curtis Henderson was storing patients improperly and that their heads and upper bodies were, in fact, well above dry ice temperature most of the time.

In December of 1972, Corey Noble and I journeyed from my home in Indianapolis. Indiana to visit CSNY and actually measure the temperature at the top of the MVE dewars, as well as at various points on the patient then in storage and so the TC meter in this picture was taken along on the trip.

Note the character and quantity of the equipment and supplies I had accumulated in Indianapolis: at left the Westinghouse Iron Heart; center, a dry ice box; upper right,
roller and centrifugal pumps; lower right, Ringer.s solution, DMSO, stainless steel heat exchanger, bubble trap, formaldehyde for sterilizing the perfusion circuit, perfusion
circuit, pH paper, liquid measuring equipment…


The morning after Corey and I had arrived at the CSNY facility, we were awakened by Saul Kent, who informed us that a CSNY member, a woman named Clara Dostal, had just been pronounced legally dead and that, since we were “experts” in the area of cryoprotection and perfusion, we should take charge of the case and perfuse the patient. This was the beginning of a period of agonizing cognitive dissonance for me (I cannot speak for Corey Noble).


Prior to this, perfusion and cool down as practiced by CSNY had been a black box to both Corey and me. We assumed that this procedure was carried out in a “scientific” manner and that the CSNY mortician Fred Horn, working with their biologist Paul Segall, were implementing some kind of reasonably professional and standardized care – even if it was not very sophisticated. In this we were sadly mistaken. To my horror I discovered that not only was I better prepared to perfuse and freeze patients in Indianapolis, but CSNY neither owned nor had access to a graduated cylinder for measuring out the volume of
cryoprotective agent to be added to the Ringer.s carrier solution! We were forced to measure out the glycerol to be added to the Ringer.s carrier solution by using an empty
Ringer.s solution bottle. The approximate liquid volumes molded into the glass of these IV bottles had to serve in place of an accurate measuring cylinder.


Even more surprisingly, we discovered that CSNY had no way of measuring temperature. The only thermometers at our disposal were the ones we had brought with us. There was no established protocol, no dedicated equipment, no data collection and no monitoring or observation of the patient at all. I was appalled and deeply shaken. For the first time I realized on both an emotional and intellectual level that cryonics had truly failed. Certainly, in the form I found it, it had no chance of success.


Corey and I did what we could. We carefully measured every parameter it was possible for us to measure on site, such as patient and perfusate temperature, perfusate glycerol concentration, arterial flow rate, patient cooling rate, and so on. We also collected effluent samples from the patient and divided them such that one set would remain with the patient (bottles seen at lower left in the next slide) and the other set would be taken back with us for physical and biochemical analysis (CPA concentration, pH, electrolytes, tissue specific enzymes, etc.).

The TC thermometer we had brought with us from Indianapolis proved essential for monitoring the patient’s internal temperature during perfusion as well as her temperature as she cooled to dry ice temperature. The objective was to thoroughly document her care and make recommendations for changes in the future. We both felt strongly that future patients should benefit from the knowledge and experience gained from this (and every)


The paper we produced appeared in the March, 1973 issue of Manrise Technical Review, a publication produced by Alcor.s brother for-profit organization, Manrise Corporation, which was edited by Fred and Linda Chamberlain.


My experience perfusing and freezing Clara Dostal left me deeply anxious and profoundly dispirited. It took several weeks before anger replaced fear, and a relentless commitment to rapidly improve conditions replaced a near total paralysis of will. In no small measure this experience led to me seek out others who shared my vision of cryonics as a competent, well run undertaking based on a scientific and medical model in the context of good business practices.



This led me to connect with Fred and Linda Chamberlain in Southern California. Following my trips to CSNY, I set out, again with Greg Fahy, to try to determine
the state of cryonics on the West Coast. What we found there, or more precisely what we didn’t find, was even more disturbing than what we had seen and experienced at CSNY. While Corey did not share my opinion, let alone my conviction, the trip to Southern California had convinced me that CSC’s patients had been badly mishandled and that
in all likelihood they had been thawed out and buried or cremated. This conviction was shared by Fred and Linda, with whom I formed strong and immediate bonds.

Fred and Linda, like me, had come to realize that cryonics was an abject failure and, with painful slowness, they had begun the process of creating facilities to provide for rescue, stabilization, perfusion and storage with two new organizations: the Alcor Life Extension Foundation, and Manrise Corporation.


We began to scour the scientific literature for information to allow for development of a rational cryobiological approach to care, and where possible experts in medicine and cryobiology were consulted. A technical publication was launched and organized research was begun into developing scientifically sound procedures and equipment – and to document them openly and in as much detail as possible.



A modest research and patient cryopreservation facility was set up and preliminary small animal research was undertaken to evaluate then current human cryoprotection strategies.


Since we could not be assured of being able to afford permanent facilities long term, a decision was made to modularize capability and a mobile operating room was constructed using an old laundry van (lorry). Refinements were made to in-house fabricated perfusion and heat exchange equipment and testing of these systems was undertaken to establish reliability and gain familiarity with their operation. Business plans were generated and necessary equipment and consumables were acquired. Cost analysis and financial and legal issues were extensively addressed. A comprehensive program of marketing (Trans Time) coupled with financial incentives for success was undertaken. Inter-organizational cooperation began and an attempt was made establishing minimum standards of care and self-regulation.


At about the same time, a graduate student in mathematics who lived in the San Francisco Bay Area, Art Quaife, along with an electrical engineer (John Day) and several other interested cryonicists, including Paul Segall, who had relocated to the Bay Area, founded Trans Time, Inc. (TT). TT was similarly focused on “rebooting” cryonics as a proper scientific undertaking run on sound business principles. TT purchased the technological platform developed by Manrise Corporation for cryoprotective perfusion (including the Manrise perfusion machine, heat exchanger, and procedure manual) and focused primarily on producing the first truly comprehensive business analysis of cryonics. They also did much to clarify nettlesome financial and legal issues.

TT launched the first comprehensive program of marketing cryonics coupled with financial incentives for success, and they also aggressively marketed their stock to
educated investors within the cryonics community.


Dedicated (leased) storage and perfusion facilities were put in place in by TT in Northern California in 1974.


On 09 February, 1974 a decade after The Prospect of Immortality was published and seven years after Dr. Bedford was cryopreserved, Trans Time accepted its first two patients and the first human cryopreservation conducted under something approaching „controlled
conditions. took place. [The Dostal case technically qualifies but it was an ad hoc effort, not a planned undertaking.]

Despite two years of preparation there were many problems with both of these cases. As you can see in this photo, many practical details, such as how to position and anchor the perfusion tubing had not been worked out and improvised solutions were employed. Note the plastic embalming fluid bottle being used as a prop and the tubing connecting the arterial line to the patient being supported by a length of ligature twine.

Much more seriously, take a good look at the patient. This photo was taken at the end of CPA perfusion (decannulation is underway and some of the refrigerating ice has been removed). Unlike Mrs. Dostal, this patient has become markedly edematous as a consequence of CPA perfusion. This happened because what seemed best in a review of the literature did not work when applied clinically. In this case, a decision had been made to use DMSO instead of glycerol because of the former.s superior cellular permeability. Unfortunately, DMSO is quite toxic to the vascular endothelium and this effect is greatly
amplified in patients with prolonged ischemic injury. This patient received no cardiopulmonary support and had suffered well over 24 hours of cold ischemic injury.

The obvious (but unheeded) lesson was that techniques used on humans must first be evaluated in a suitable animal model under conditions as close to those that are encountered clinically as possible.


While the party line to the media had always been that patient stabilization was begun immediately upon pronouncement, it was not until Fred Chamberlain, Sr., arrested on 16 July, 1976, that this was actually done. The next such case, shown in this slide, took place under the auspices of Trans Time three years later in January of 1979. At the bottom center of the slide a blue plastic case with a small speaker next to it contains an electronic stethoscope with amplifier so that the patient could be monitored continuously and the moment of cardiac arrest determined with precision. This instrument was developed by Fred Chamberlain and me and was first used (successfully) on his father, Fred Jr.


At this point, cryonics as practiced by Alcor and Trans Time had become professionalized to the extent that there was control over and documentation of perfusion temperature, pressure, and flow. The volume of perfusate used was based upon complex mathematical modelling of CPA uptake and there was frequent and consistent measurement of the concentration of CPA in the venous effluent. Finally, in-house trained and skilled personnel were available in conjunction with an effective emergency response system (ERS).


Cooling to -79oC and -196oC were also documented and brought under some measure of control. Packing of patients in dry ice to achieve freezing was abandoned and an isopropanol bath was used in conjunction with the measured addition of dry ice in order to reduce the patient’s temperature in a controlled manner.



Then, in 1979 the years of deceit and lies which had dogged cryonics from the start came to the fore. The nearly completely decomposed bodies of ten cryonics patients were discovered by an investigative reporter in the facilities of CSC in Oakwood Cemetery in Chatsworth, CA. As I have previously stated, the consequences of this scandal were devastating for cryonics. The story of the initial discovery and the subsequent civil trial that resulted remained an item in the national press well into the 1980s.


Cryonics became synonymous with “thawed bodies” and there were countless cartoons and gruesome humor pieces in magazines and newspapers. The loss of credibility and
the specter of failure resulting from Chatsworth extend into the humor, as well into the more serious criticism of cryonics today, as evidenced by this still from the animated
series Futurama. Futurama.s creator Matt Groening followed the Chatsworth scandal as a boy and some of his most successful cartoons early in his career satirized the Dora Kent debacle.


In 1980 the grotesque scene at Chatsworth was again played out, this time, mercifully, absent any media coverage. The victims were Ann DeBlasio and a woman from Beverly Hills, California, both of whom had been placed in an inadequate facility, absent any alarms or monitoring, in Mount Holiness Cemetery in Butler, New Jersey (NJ).

That facility was a duplicate of the one Nelson had constructed in Oakwood Cemetery in Chatsworth. And yes, Nelson, along with Nick DeBlasio, had built the Butler, NJ facility as well.


Eleven years after she had been cryopreserved at CSNY, this is what had become of Ann DeBlasio. After the expenditure of tens of thousands of 1970 dollars and countless hours of labor any chance these two women had of returning to life was gone.

So ended the second era in cryonics.

 End of Inherent Failure Mechanisms and Risks, Part 1

]]> 0
Cryonics: Failure Analysis, Lecture 1, Initialization Failure, Part 3 Mon, 16 Apr 2012 07:31:24 +0000 chronopause Continue reading ]]>

By Mike Darwin



While this small corps of serious and honest people was hard at work trying to re-launch cryonics on a solid footing, the legacy of the first era of careless and irresponsible cryonics activity was maturing into what can only be described as a failure of truly catastrophic proportions.


As early as 1965 Ettinger had appeared on national television and, in effect, endorsed cryonics operations which were either outright frauds, or were operated by an incompetent sociopath. No effort was made to verify any claims made, and all attempts to establish minimum standards for financial and technical conduct were rebuffed.


Wealthy and influential individuals with a deep personal interest in cryonics were put in touch with charlatans and con men that took their money and promptly disappeared. The men who appear on this slide were giants in their respective fields of music, television and cardiothoracic surgery. All were soon alienated by con artists such as Milgram and Gold


These internationally known and respected celebrities experienced similar mishandling, with similar results.


When the long awaited ‗freezing‘ of the first man took place on 12 January, 1967, the man in charge was Robert F. Nelson, aka Frank Bucelli, a Santa Monica TV repairman. Bucelli was much more than a TV repairman; he was a convicted felon with a long criminal record beginning in his youth; including violent offenses such as assault and battery as well as numerous charges, and several convictions for fraud and theft.

This background had been uncovered in 1966 by CSNY President Curtis Henderson, who had commissioned an investigative report on Nelson/Bucelli by the Pinkerton Agency, the most respected private detective service in the US at that time. This report was forwarded to Ettinger – but no action was taken. Nelson “froze the first man,” and in so doing he established the conditions under which cryonics would subsequently be practiced: lots of superficial media attention giving the appearance of openness and transparency, while at the same time operating in virtually complete secrecy from both the membership of his cryonics society (the Cryonics Society of California: CSC) as well as the press, the public and the regulatory authorities.


At the press conference CSC held following Dr. Bedford‘s freezing, the media were told that the first man had been frozen under “controlled conditions.” That a physician had been standing by with a mechanical CPR device (a Westinghouse Iron Heart) and that CPR had been initiated as soon ―as the patient‘s heart stopped,‖ followed by immediate packing in ice and cryoprotective perfusion and cooling to dry ice temperature (~ -77◦C).

The Method: Description of the “Method for Freezing Humans,” By Dante Brunol, M.D., In: Robert F. Nelson, We Froze The First Man, Dell, New York, 1968, pp. 136-156.


Subsequently, an elaborate protocol that was purported to have been used called ‗The Method,‘ was circulated to cryonics society officials across the US, and shortly thereafter published in a supposedly factual book about Dr. Bedford‘s cryopreservation produced by Nelson in collaboration with a professional writer, Sandra Stanley (We Froze the First Man).


The Press Release: “The first reported freezing of a human at death, under controlled conditions, occurred on Thursday, January 12, 1967.” Robert F. Nelson, We Froze The First Man, Dell, New York, 1968, p. 72.

There has been a great deal of effort of late to portray Nelson as a victim of circumstance, as a well intentioned man who ―got in over his head and handled it badly.‖ Nothing could be further from the truth. As the press release quoted on this slide makes clear, Nelson lied, and he lied from the start. Dr. Bedford‘s cryopreservation in no way even remotely matched the brief description in the press release announcing his “freezing.”


Nor was the reality of what had in fact happened in any way reflected in the myriad of subsequent media stories chronicling Dr. Bedford‘s cryopreservation. The media reported what they were told, principally that Dr. Bedford had received immediate post cardiac arrest cardiopulmonary support, cryoprotective perfusion with a DMSO-containing perfusate, and controlled cooling to dry ice temperature (~ -77◦C).


This slide graphically documents what the cryonics community and the world were told had been done for Dr. Bedford. The Amtec roller pump pictured here is the very model that is said to have been used in ‗the method‘ employed to cryoprotect and freeze Dr. Bedford. This newspaper article detailing his cryoprotective perfusion is the very article that caused me to become involved in cryonics in 1968.


It wasn‘t until the mid-1970s that I began to piece together a very different story of what had happened to Dr. Bedford on that January night in 1967. A picture began to emerge of negligence fused with gross incompetence. When Dr. Bedford was pronounced legally dead, Nelson was nowhere to be found. There was no answering service, no list of numbers where he might be reached, and no equipment or supplies assembled, tested and at the ready.

It was, in fact, hours before Nelson could be located. There was no oxygen to power the heart lung resuscitator. The Amtec pump was owned by CSNY, not CSC, and there was in fact no pump, no perfusion and not even a cooperating mortuary.


On 25 May, 1991, I at last had the opportunity to see for myself what Nelson and his cohorts had done to Dr. Bedford. On that sunny spring day we removed Dr. Bedford from his inefficient horizontal dewar to place him in an upright, “Bigfoot,” multi-patient storage vessel.

With careful preparation, this allowed us to examine Dr. Bedford externally, document his condition and take some (peripheral) tissue samples. We placed him in a large, foam insulated, open-topped tank of liquid nitrogen. This allowed us to examine him and evaluate his condition while keeping him continuously submerged in liquid nitrogen, thus precluding any danger of warming him.


This afforded us an opportunity to examine him for the first time in 24 years. Now, you too will have the same opportunity.


This is the reality of the “care” that Nelson gave Dr. Bedford. He was not perfused, but rather pin-cushioned with syringes of either neat, or highly concentrated DMSO. The large areas of scalded looking skin are probably a result of the hemolytic action of the DMSO solution which was being injected into the vicinity of the carotid arteries in the neck.

The frozen bloody exudate from his mouth and nose is a result of incompetently performed manual chest compressions administered in an attempt to ‗circulate‘ the DMSO to his brain and other vital organs.


This deceit and evasiveness alienated competent individuals and caused a cascade of problems that made the environment for cryonics more hostile. This in turn contributed to the lack of adequate capitalization and denial of access to high quality profession and technical services such as physicians, cryobiologists, businessmen and cryogenic equipment manufacturers.

It also provoked intense hostility from the scientific community at large and last, but by no means least, it resulted in Chatsworth. Nelson‘s lies hadn’t stopped with Bedford and they would not end until cryonics was nearly destroyed by his misconduct at Chatsworth where 9 people were found to have been allowed to thaw out (or in some cases had never been

frozen at all) and decompose under shocking conditions. Chatsworth resulted in a nearly decade long hiatus in progress in cryonics and the number of people cryopreserved dwindled to less than 1 per year during the interval of 1975 to 1987!



While fraud and deceit drove the failure of cryonics on the West Coast of the US, other factors were in play on the East Coast. In contrast to CSC, CSNY was operated in an open, above board and honest manner. While CSC‘s patients were decomposing at Chatsworth, CSNY‘s patients were relatively well cared for. In a sense, cryonics existed as two parallel universes a continent apart. This had a polarizing effect, dividing the few cryonics adherents who existed at that time (both the committed and the less so) into opposing camps; each suspicious of and unable to cooperate with the other.


On the East Coast, CSNY was making mistakes that would also prove damaging and eventually lethal. While fraud was not an element in these errors, lack of planning and foresight certainly contributed mightily. CSNY and its brother organization Cryo-Span, Inc. had no business plan, no protocols or procedures for delivering the technical aspects of care, and no emergency communication or response system. As CSNY‘s

President, Curtis Henderson was later to say, “We were just making it up as we went along.” On 28 July, 1968 CSNY cryopreserved its first member, Steven J. Mandel.

In the slides that follow I want to give you some visual images that will hopefully provide you with a feeling for what cryonics was like at that time, both in terms of its technology and in terms of its public image.


Steven was a 24-year-old aeronautical engineering student from New York City who was already gravely ill when he made arrangements with CSNY and purchased his life insurance. In fact, he was uninsurable, and experienced legal death well

before the non-contestability period of the policy had elapsed. There was no money to pay for the immediate expenses of perfusing and freezing him, let alone to cover the cost of indefinite storage in liquid nitrogen. This situation became known to the management of CSNY within days of Steven‘s cryopreservation.


Despite the absence of funding, CSNY proceeded to place Steven into long term storage and rely upon promises from his mother, Pauline Mandel, to provide regular payments for his long term care.


This decision was made for many reasons including lack of experience, naiveté, and a strong desire to ‗keep up with the Nelsons‘ and garner media attention which it was believed would further the program and attract additional members and customers.


This decision depleted the organization of its capital equipment and cash and subjected it to the considerable expense in time and money of operating a storage facility for whole body patients. While in some ways this was beneficial in that it ‗forced‘ these facilities into existence and also forced the principals of CSNY to confront the logistic, technical and business realities of actually delivering human cryopreservation services, it did not provide them with either the capital or human resources to do these things effectively.


Unlike Nelson, who was able to show impressive drawings of his non-existent facility, CSNY had to be content with exposing its modest, indeed crude appearing operation to public scrutiny. The rough nature of the operation, housed as it was in the groundskeepers‘ room of a Long Island cemetery did not inspire confidence in the public or in CSNY’s own members.


Despite, and in large measure because of these difficult experiences, Curtis Henderson became focused on developing reliable cryogenic storage equipment, and one beneficial outcome of CSNY‘s efforts was the creation of the first reliable and cost-effective equipment for human cryogenic storage, the Minnesota Valley Engineering dual patient upright, Superinsulated™ high vacuum dewar.

The previous horizontal units manufactured by Cryo-Care Corporation of Phoenix, AZ were notoriously unreliable and very inefficient making long term care cost-prohibitive.


Because the patients accepted by CSNY were all third-party cases – situations where the relatives had either initiated cryopreservation or were expected to pay for it, decisions about how patient‘s were cared for became disconnected from rational, scientific or even simple and straightforward technical requirements. The relationship of the cryonics organization was not with the patient, but rather with his next-of-kin.


When the MVE dewars were first put into service in August of 1969, it was argued that for commonsense reasons of safety, patients should be racked in the dewar in a head down position. In the early 1970s I argued strenuously that in addition to providing extra protection in the event of vacuum failure, racking patients in a head-down position in the dewar would prevent the enormous thermal cycling that the head and brain were experiencing each time the unit was topped up with liquid nitrogen (i.e., quench cooling of the head from ~ -145oC to -196oC in a matter of minutes).

This proposal was met with fierce opposition by relatives, and (some) CSNY members, alike. Emotional and public relations considerations were paramount. I was told, “We can‘t have our patients in there upside down standing on their heads! People will really think we are crazy!” If you look carefully at the photo of the patient at the upper left of this slide, you can see a line demarking the liquid nitrogen level. Because liquid nitrogen is dispensed in 160 liter containers the liquid level after filling had to be allowed to fall to approximately mid-chest level, exposing the upper body to a continuous series of cycles of cooling and warming with a delta T of ~50oC.


The third party problem was greatly exacerbated when CSNY cryopreserved Ann DeBlasio in January of 1969. Mrs. DeBlasio was the wife of a blustering and contentious New York City police officer who often ended discussions by waving his firearm menacingly.


DeBlasio, seen looking in through the doorway as his wife‘s dewar is consecrated by the family priest, Rev. Severio Mattei, had no idea of what cryonics was really like.

Understandably, he expected a professional operation with a solid technical basis and, at least, a reasonable aesthetic front. What he was confronted with were a group of people who defied convention in almost every way and a primitive facility that could not even be locked and where groundskeepers tossed their cigarette butts onto the floor and left the waste from their lunches on his wife‘s temporary storage container.


So, while Ann DeBlasio became CSNY‘s second patient in long term storage, the situation was not stable and there was dissatisfaction and unhappiness on all sides.


This cramped, crude CSNY facility, coupled with a lack of professionalism and the absence of a business-like approach crippled, and arguably destroyed CSNY – and did much to injury cryonics as a whole.


While the men who ran CSNY were honest and made no attempt to hide their shortcomings, they nevertheless projected, through their publications and literature, an image of competence and skill that was wholly lacking. In fairness, they understood much of what needed to be done, but having committed themselves to the formidable and unrelenting task of actually delivering cryogenic care (in the absence of adequate resources) it became virtually impossible for them to pursue the proper course of action.

End of Initialization Failure, Part 3


]]> 0
Cryonics: Failure Analysis: Lecture 1: Initialization Failure, Part 2 Sun, 15 Apr 2012 19:46:56 +0000 chronopause Continue reading ]]>

By Mike Darwin



The core ideas of cryonics, that death is a function of remaining biological structure (information), technological sophistication, and that deep cooling can arrest decay and preserve structure indefinitely to await resurrection by a more sophisticated future medical technology were first promulgated by Robert Chester Wilson Ettinger in a science fiction story, The Penultimate Trump, in 1948.


Ettinger did nothing beyond laying the idea out in his story until 1962, at which time he began to be concerned that no one else had come to the same conclusions he had. It occurred to him that if he did not act to at least inject the idea into the culture, he might not benefit from it himself. Ettinger, in turn, had been inspired to create cryonics based on a 1931 science fiction story, The Jameson Satellite by Neil R. Jones, in which one Professor Jameson has his body rocketed into orbit following his death where he remains, frozen, until many millennia later his brain is removed and repaired by aliens, the Zoromes, who place him in a robotic body and allow him to accompany them on their romps around the galaxy.


At about the same time, an intellectual and remittance man named Evan (Ev) Cooper had come to the same conclusions as had Ettinger and he privately published a manuscript that proposed a “freezer program.” Cooper, unlike Ettinger, had no scientific training and his proposals for using arctic or Antarctic storage lacked scientific rigor.


In 1964 Ettinger published The Prospect of Immortality after it passed scientific review by universally respected experts at the time, such as Isaac Asimov and the maverick cardiac surgeon and cryobiologist Richard Lillihei.


Aside from the idea of cryonics, Cooper and Ettinger had a number of other things in common. Both men were intellectuals (academic-types) who possessed large personal libraries, read voraciously and were described by their contemporaries as “visionaries” preoccupied with ideas. Both men sought leadership positions, and both men looked to others (governments, NGOs, corporations, entrepreneurs) to subsume and implement cryonics.


Their personalities were those of the classic introvert. I want to be at pains to point out that this is in no way a criticism of either man. In general, we do not get to pick our personalities or temperaments, and these men were what they were: there is no fault or blame involved in being either an extrovert or an introvert.


Both men saw cryonics as integrating into and augmenting the existing cultural paradigm; Cooper, from a left of centre perspective, believed cryonics should be implemented by the United Nations and administered from a top-down, central-planning perspective as a public welfare measure, while Ettinger, from a right of centre perspective, envisioned cryonics being implemented by large corporations and entrepreneurs offering a wide range of services in a largely laissez faire manner.


Nevertheless, these traits had consequences for cryonics that were, on balance, not conducive to its successful launch. Things might have been different if either man had had a Huxley to his Darwin – a vigorous, outspoken, charismatic, articulate and, above all, honest and well informed advocate of their ideas.


Precisely for the reasons outlined above, two highly influential men who understood cryonics, and believed in its technical feasibility, rejected it, one personally and privately, and the other vocally and publicly. The science fiction writer, savant and media darling Isaac Asimov, understood immediately that cryonics would up-end the existing order and ultimately lead to a fundamental transformation of mankind into something other than human. He found this extremely disturbing and “unnatural,” and wrote and spoke extensively against cryonics on social, environmental and moral grounds.

The widely respected science fiction author and futurist Fred Pohl also understood the likely workability of cryonics and in fact wrote a very positive cryonics themed novel, The Age of the Pussyfoot (first published in 1966). Pohl rejected cryonics exclusively on the basis of survivorship guilt and concern over his ability to adapt to a world transformed by technologies even he might not be able to imagine. Pohl actually turned down an offer for a no-cost cryopreservation from me and several others active in cryonics on September 1st, 1979, and he expressed his reasons for doing so pleasantly, articulately and in person.

FIRST ERA: 1964-1972


Despite these shortcomings and setbacks, cryonics was initially received fairly well in the US. There was enormous publicity and most of the initial newspaper, radio, magazine and

TV coverage was open minded, and not infrequently positive. There was a great deal of public interest, and media appearances by Ettinger, and others, typically resulted in hundreds of requests for information.


But the culture, both scientific and popular, was woefully unprepared for the idea. It is difficult, today, to communicate what the world was like in 1964. The discovery of the structure of DNA was only 11-years old, CPR was only 4-years old (Leonard Cobb would not hold the first citizen CPR training sessions in Seattle, WA until 1972 (8 years later), the Uniform Determination of Death Act was not passed until 1978 (14-years later) and the first heart transplant was 3-years in the future (1967). People uniformly saw life and death as binary states and the idea that the soul, or some other mystical life force left the body at, or shortly after the moment of death, was nearly universal in the general population.


Recovery from apparent (clinical) death which, is now widely understood and taken for granted, was a new phenomenon in 1964, and the Emergency Medical System (EMS) as we understand it today, did not exist. In most communities the mortician‘s hearse doubled as the ambulance and the person most likely to transport you to the hospital if you were gravely ill or injured was your local Funeral Director, or one of his embalmer employees.


It is debatable whether these formidable cultural obstacles could have been overcome. But what is not in dispute is that overcoming them was hopeless in the absence of careful planning and entrepreneurship of the cryonics idea. Both Ettinger and Cooper abdicated any responsibility for implementation of cryonics to others, and neither made any real efforts at a first approximation of the technological specifications or necessary business planning.

In Ettinger’s case, he uncritically and actively endorsed con men, frauds and the incompetent – actions that were to badly damage the credibility of cryonics with people of means and influence, as well as those in the scientific community and the professions.


Powerful, paradigm changing ideas require careful husbandry and meticulous planning. A good example of this that stands in sharp contrast to cryonics, is the idea of molecular nanotechnology, as first articulated and promulgated by Eric Drexler. Drexler understood not only the potential benefits of nanotechnology, but also its downsides: its nearly endless capacity for harm, ranging from mischief to catastrophe.

He also understood the need to back up general statements and assertions about the capabilities of nanotechnology with detailed scientific analysis and modeling. He did not write Engines of Creation and stop there; he followed through with Nanosystems, and he surrounded himself with talented, honest, competent and articulate people who could and did promote his ideas in a responsible way – to extraordinarily favorable reception. It is worth noting that Drexler, like Ettinger and Cooper, is also an introvert who shares most of the same personality traits with both men.


Drexler was both a scientist and an engineer, and he approached communication of his ideas to both the scientific community and the public, with care and precision. He clearly defined terms and, where necessary, created new language to express ideas that could not be effectively communicated otherwise. By contrast, those promoting cryonics gave no thought to making important semantic distinctions, such as the difference between the sloppy and imprecise contemporary medico-legal definitions of death, and the new reality that cryonics implied.


Similarly, identification and alliance of cryonics with the mortuary and cemetery trades (as opposed to the medical and scientific professions), and failure to develop any in-house standards of care; either technical or financial; lead to a total failure to professionalize cryonics.


This in turn led to the empowerment of amateurs and laypersons, usually with “outsider” personalities, often with accompanying deficits in social and emotional intelligence. These people attracted dysfunctional and sometimes frankly sociopathic personalities as members (and sometimes as activists). The problem of sociopaths in positions of power and authority in cryonics is a serious one which I will return to in detail later in these lectures.


In a rare moment of candor, Ettinger came close to acknowledging this interpretation of the failure of cryonics to launch, as possibly being material to how things turned out, and implicit in this statement is the acknowledgement that cryonics ‗failed,‘ that it did not succeed in either becoming a dominant force in the culture, or even in establishing itself as a respected (or feared) minority player. Consider, by contrast, the outcome for Scientology, a movement started by another of Ettinger‘s cohorts (fellow science fiction writer L. Ron Hubbard) 11 years earlier, in 1953.

Today Scientology is a multimillion dollar enterprise that makes or breaks legislation in the US, elects representatives to Congress, tell the IRS what to do, and has at least 50,000 hard core adherents in the US alone. While it is a tiny entity, and has by no means come to dominate the culture, it has managed to survive withering attacks and to carve out a place of safe harbor and exert enormous political influence relative to its size. That happened because of careful planning and clever strategizing. It was no accident and it was by no means inevitable.


And this brings us to the all important question, ―What was, at a minimum, required to launch cryonics successfully in 1964 – and perhaps more to the point, what are the implications for cryonics today; particularly as it is presented to new cultures that are effectively tabula rasa with respect to cryonics? The former Soviet Union and China are two prime examples of places where cryonics has not penetrated the culture: or is just beginning to.

Are there lessons to be learned and mistakes to be avoided from the first period of failure in the US? Are the nascent cryonics groups in these ‗new markets‘ behaving responsibly, are they repeating the mistakes made by those of us in the US from 1964 to 1972?

To answer that question it is necessary to spec out what should have happened in 1964. First, there needed to be a thorough explication of all the required technical elements of the program including necessary equipment (all phases of program), required personnel and their qualifications, an analysis of the market and obstacles to implementation of the proposed program. And, of course, essential to any complex enterprise, there needed to be a business plan including corporate structure (profit, NGO, etc.), cost estimation, timeline to implementation…and so on. None of his was done.


To make clear what I‘m talking about here, I’ve created a block diagram of the vital elements of any cryonics operation, whether being created in 1964, or today. This is the bare minimum framework of functional elements required. Each of these, in turn, breaks down into supporting subsystems.


As an example, I’ve chosen the Emergency Response System (ERS) because it is the first link in the chain of member recovery in the event of life threatening illness or cardiac arrest. If the Cryonics Society (CS) can neither be reached nor respond when members or clients need them, then they have little to offer in the way of effective services, and certainly, they have nothing to offer in terms of confidence.

I’ve also listed every item, from cotton balls to capital equipment, required to undertake stabilization and transport based on what the technology available in 1964. These assets, both physical and organizational, may seem impossible to have achieved then, and may seem equally impossible to achieve now, in places where cryonics is starting over, or starting out for the first time.


However, history shows this is not the case, and I am in the unique position of having been both a witness and a participant in events that prove that it was possible to put all of these critical elements in place using a handful of people and far less resources (dollars expended) than were brought to bear on the failed launch of cryonics during the first 8 years of its existence in the US.

This slide shows what was achieved by 4 activist individuals who were part of a group of less than 30 people. Single-handedly, the Chamberlains wrote a comprehensive procedure manual and established best practices documentation (Standard Operating Procedures; SOPs in the US and Canada) to support it. They detailed protocols for taking call (responding to an emergency when the Alcor pager went off), hired a medical answering service to field emergency calls, developed and deployed emergency response kits and trained volunteer staff to administer cryonics first aid: manual & mechanical CPR, external cooling, anticoagulation & buffer administration, and transportation of the patient.

They built and tested perfusion equipment, contracted with an ambulance company and mortuary for technical and transportation services and, finally, constructed a mobile perfusion facility where cryoprotective perfusion and freezing could be carried out.

In addition to all of this, they kept the books, put out a technical publication, Manrise Technical Review, and practiced and drilled relentlessly to hone their skills and familiarize themselves with the equipment they would be using. And before they did any of this, they created a business plan which was realistic and scaled to the (very small) market they estimated they would be servicing.

And, I should add, all of us were employed full time during this period at demanding jobs; Linda was an executive secretary, Fred was an IEEE at the Jet Propulsion Laboratories and I was a full time student putting in 30-40 hr/wk at McDonald‘s (literally making hamburgers). Total dollars expended (adjusted for inflation) = $350,000.


Data collection sheets, flow charts and thorough documentation on how to use equipment, prepare perfusate and carry out cryoprotective perfusion and freezing were all put in place and rigorously validated before the first Alcor patient presented for care in the summer of 1976. Our competence and attention to detail had the effect of quickly attracting the best

and brightest in cryonics to Alcor (and Trans Time) and our professionalism ultimately attracted and deeply involved medically competent individuals such as Allen McDaniels, M.D., Jerry Leaf, Virginia Jacobs, and others. To approach cryonics with anything less than this is not merely to invite disaster, it is to ensure it.

 End of Initialization Failure, Part 2

]]> 0
Cryonics: Failure Analysis: Lecture 1: Preface and Initialization Failure, Part 1 Sun, 15 Apr 2012 04:44:13 +0000 chronopause Continue reading ]]>  

By Mike Darwin

This series of lectures had its origin in a presentation entitled Cryonics: Why it has failed, and possible ways to fix it, which was delivered at an ExtroBritannia meeting on Saturday August 2, 2008 at Birkberk College in London, UK.



Before I begin the formal, structured part of this presentation, a few words are in order to put it into context. We live in an age where passion and strong emotion have been largely removed from daily discourse and are now considered acceptable only in the realm of fiction; in movies and video games. Characters there are free to speak in extremes and to speak passionately; not so those of us who inhabit the real world. I will be breaking that taboo today because what I am going to talk about is a life or death issue for you, for me, and for the 7 billion or so other human beings on this planet. My life matters to me a great deal, and I‘m not ashamed to admit it.

Most of the people on this planet get through life on a daily basis by being carefully shielded from certain images and ideas which they find uniquely disturbing and destabilizing. Of course, if they were, in fact, immortal supermen, these images and ideas would have a very different effect. But, they aren’t immortal supermen; and neither are we.

So, some of the images you will see in this presentation, should you choose to stay, may be unsettling or even frightening. I do not apologize for this; I believe they are essential to communicate understanding and are, in fact, the only way to communicate that understanding effectively. So, if you are likely to be disturbed by images of death and decomposition, I suggest you make your exit now. You’ve been warned.

Finally, I want each of you to understand that I believe cryonics is the most powerful and humane idea in the world today, and I treat it as such. I don‘t ask you to do the same (yet), but I do ask you to understand and to respect that this is my perspective, and I have the floor. I do not suffer fools gladly and a good part of what I have to say today is the direct result of people tolerating fools and foolishness in cryonics.


It is impossible to understand what I have to say without understanding something of who I am and how I got to be that way. It has been said that a happy childhood is the worst possible preparation for life, and I can certainly attest to that. I grew up in a stable and secure environment; I lived in the house my grandfather had built and in which my mother had been born. While my parents were working class, they afforded me everything necessary for good intellectual and emotional development. As an only child in a loving extended family, necessities were assured and an enriched environment was a given.


Unfortunately, the one thing my parents and extended family could not protect me from was the reality of the inevitability of disease and death. My parents were in their mid-30s when I was born, and a consequence of this was that my grandparents and aunts and uncles began to suffer age associated morbidity and mortality when I was still young and most of them had died by the time I was a pre-teen.

The red symbols above indicate people who are now dead, many long dead. I‘m the babe in arms sucking his thumb. While my mother (holding me) and my father (who took the picture) are both still alive, my mother has descended into the dark hell of Alzheimer‘s disease. Several of the people still alive from the day in 1956 when that photo was taken are in failing health and will soon be dead. [Note: both of my parents died in November of 2011.]

The impact of these lost lives on me as a child was immense and terrifying and I soon came to the conclusion that, as Mike Perry has so eloquently put it, ―The individual ought to endure – for a life rightly lived is never rightly ended.


A particularly traumatic event, and one that was to shape my life, occurred when I was ~ 8 years old. I discovered my maternal cousin, Rae Rohrman, with whom I was very close, dead in her home a few doors down the street from where we lived. Rae was a non-compliant diabetic who died suddenly during the summer and was not discovered until I entered her home approximately a week after her death. She was in an advanced state of decomposition and there were none of the considerable resources or “contexting” of the mortuary industry or the church to soften the hard reality of what death really is.

It is an ugly, destructive process and in confronting it I began to realize that the mystical explanations I was being given as to why it was both necessary and good were merely a coping mechanism adults used to stop themselves from going insane, a version of Santa Claus and the Tooth Fairy for grownups which someone, someone quite human, had made up to keep the world as barely sane and orderly as it was. It was crystal clear to me that no one in their right mind would want what I saw had happened to Rae, to happen to them.


“That event and the deaths of others close to me, launched on me a quest to find a way to halt decomposition, and, shortly thereafter, to prevent death. I began experimenting with ways to interrupt and restart life processes in plants, insects and small vertebrates (red eared slider turtles) by cooling and freezing. In 1966 I was introduced to cryoprotectants and to tissue culture, and by 1968 I had amassed a substantial amount of experimental expertise and results. It was clear to me that cryopreservation offered the most likely path to achieving suspended animation.

With suspended animation would come two great boons: the ability to travel to distant star systems and explore the universe, and the ability to enter a state of indefinitely long waiting if death threatened. While I did not foresee reversal of aging or the application of this technology after so-called death had occurred, I found it enormously reassuring that death and decomposition could be forestalled, essentially indefinitely, and that even if experiencing life was not possible forever, in theory, avoiding death was.

During the course of a science fair project in 1967 entitled, ‗Suspended Animation in Plants and Animals‘ I was handed a newspaper clipping that introduced me to the idea of cryonics by telling the story of one Professor James Hiram Bedford who had been frozen after “death” to await a cure for his cancer, as well as rejuvenation from old age, to a state of healthy vigor.


I promptly contacted the various cryonics organizations extant at that time, and quickly joined the Cryonics Society of New York (CSNY) as a suspension member, taking jobs mowing lawns and doing yard work to pay for my life insurance. In 1972, while visiting CSNY on my secondary school holiday, I was asked, along with a young graduate student, Corey Noble, to perfuse and freeze a CSNY member, Clara Dostal, who had been pronounced legally dead a few hours earlier.

I was 17 at the time and had already amassed a considerable amount of hands-on experience in cryonics. This event, as you shall see a bit later, also had a profound emotional and intellectual effect upon me.



The beginning of cryonics is probably best dated to the publication of Robert Ettinger‘s The Prospect of Immortality in 1964. This date is important because it provides context for much that was to adversely affect cryonics, so you should keep it in mind as we proceed.


I did not live in a vacuum, and my interests in science and coming developments in technology was keen. I was an avid reader of classic 1950s-60s science fiction as well as popular and “hard” science publications and books. In 1968 my country was the richest and most technologically sophisticated in the world, and it was about to land a man on the moon, and return him safely to earth.

In fact, it was about to land a number of men on the moon and recover them all safely. At that time, the United States (US) Federal Government was funding the National Aeronautics and Space Administration to an unprecedented degree. Not since the Manhattan Project had so much money and effort been expended upon a scientific undertaking.

A world view emerged from this effort, and it was a world view promulgated, endorsed by, and made completely credible to the populace by the US government. That world view was one that posited as inevitable the construction of a large, orbiting space station, the establishment of a permanent lunar base, and the beginning of the expansion of humanity into the solar system – and more speculatively, beyond.

This worldview is best summarized and most accessible today in the first half of the film 2001: A Space Odyssey which premiered in 1968, the year I was becoming deeply involved in cryonics. While the film was undeniably science fiction in its premise of encountering extraterrestrial life, it‘s technological predictions of what life would be like at the turn of century were universally considered completely reasonable by far sighted and respected scientists and futurists – even conservative ones such Dandridge Cole and Isaac Asimov.

That world, 33 years in the future, became my model, and the model for millions of other thinking people, young and old alike, for how the future would be. It was a world where space colonization was underway, life spans had been modestly extended, human hibernation was a reality and solid state organ cryopreservation was in use for storing transplanted organs. It was a reassuring view of the future, and in particular of my future, if I didn’t die before getting there.


By 1976 I was becoming uncomfortably aware that the future I expected was not materializing at a rate consistent with the worldview in 2001. Organ cryopreservation programs had been abandoned in all but one facility in world, the US manned space program was doomed, and interest in serious, interventive gerontology, let alone meaningful research, was nil.

The money and intellectual resources required to achieve these goals had been redirected to an endless series of wars, first in Vietnam and later in the Middle East and East, as well as a succession of botched and unsuccessful programs to end poverty in the US (the Great Society), cure cancer, and deal with longstanding mishandling of the environment. The spending spree of the latter days of the Cold War bankrupted the Soviet Union and, in truth, bankrupted the West, as well. The focus of the planet‘s population was on protecting itself against bogeymen of its own making and it spent and spent maniacally to create weapons systems of vast lethality and ever increasing complexity.

So, sometime in late in 1976 I wrote out a timeline of milestones that I thought would be necessary if I were to survive. This was a simple list of critical achievements with the dates by which they must be accomplished alongside them. It took a conservative and probably all too unfortunately realistic prediction, of the likely arc of my productive life.

While it has proved a more accurate road map than my naive first imaginings of my future, it too has fallen short and has proven flawed, perhaps fatally flawed. Since I was not then, nor am I now, either poorly informed about cryonics or lacking in real world experience in its practice, I suggest you might want to pay careful attention to what went wrong with this very conservative timeline, because it very likely has important implications for your future as well.


This quote, suggested by Robert Ettinger for the opening of Robert Nelson‘s book We Froze the First Man, was meant to imply that the success of cryonics was inevitable meant to imply that the success of cryonics was inevitable – that it was an idea whose time had come. Victor Hugo was an idealist, and a man who had the good fortune to live in an age where the time had indeed come for most of the ideas he cared passionately about and championed.

Overlooked by Ettinger was that powerful, paradigm disrupting and socially inflammable ideas require careful preparation of the culture before they can flourish. No thinking person would imagine it possible to arrive in a Stone Age culture, such as the Pirotribe, in the Amazon basin, and begin discoursing successfully on Quantum Electrodynamics or Natural Selection. The dismal experience of Western Christian missionaries (and of their “flocks” ) with African and Polynesian cultures similarly points to the futility of attempting to convert an unprepared culture to ethical or ideological standards that are alien to their environment and destructive to their culture and their entire way of life.


While applied engineering and electronics were undergoing explosive advances in 1964, the biological sciences lagged far behind. In the medical, biomedical and cultural context of 1964, the year Ettinger‘s The Prospect of Immortality was published, the discovery of the structure of DNA was only 11-years old, CPR was only 4-years old, the Uniform Determination of Death Act would be not be passed until 1978 (14-years later), the first heart transplant was 3-years in the future (1967), and most of the United States had no emergency medical system (EMS): ambulances were hearses driven by Funeral Directors.

Some Definitions “Culture“: The sum total of values, norms, assumptions, beliefs and ways of living built up by a group of people and transmitted from one generation to another.” Innovation: “The adoption of a new practice, process, or paradigm by a community —not just a new product or service. “Creativity“: To cause to come into being, as something unique that would not naturally evolve or would not exist via ordinary processes. Resulting from originality of thought.”


To understand the impact this primitive state of affairs in the life sciences was to have on the launch of cryonics, it is first necessary to examine the way scientific advancement proceeds in a culture, and in order to do that we must define some key concepts. Culture: The sum total of values, norms, assumptions, beliefs and ways of living built up by a group of people and transmitted from one generation to another. Innovation: The adoption of a new practice, process, or paradigm by a community — not just a new product or service. Creativity: To cause to come into being, as something unique that would not naturally evolve or would not exist via ordinary processes and resulting from originality of thought.



There are, fundamentally, two types of new ideas: Conventional: incremental innovations, with a high likelihood of success and a modest return on investment and Radical: (Paradigm Changing): favoring or effecting fundamental or revolutionary changes in current practices, conditions, or institutions with a low likelihood of success and a large return on investment.


In the early 1970s, again well after cryonics had attempted to launch, the philosopher and historian of science Imre Lakatos created a new model for how scientific change occurs. He posited that scientific advance proceeds on two fundamental and very different levels. Most of scientific and technological progress is incremental; it involves testing and validation or invalidation of the dominant scientific paradigm of the age.

For instance, in a world where the earth is presumed to be the center of the universe, all astronomical work will consist of the careful accumulation of information designed to support this view and to reconcile observed phenomenon with the core tenet that the sun, and other heavenly bodies, revolve around the earth.

At some point, discontinuities in the observed data may lead to an alternative paradigm; one completely add odds with, and antithetical to, the accepted explanation (theory) of how the universe works. This second type of progress is not incremental, but rather is revolutionary: it overturns the entire structure of the previous paradigm. It penetrates the protective belt of gentle scientific inquiry and smashes the hard core of the existing paradigm.

We tend to forget that scientific ideas do not exist in a moral, social or philosophical vacuum – or in a political one, for that matter. Scientific theories such as how the solar system is organized, how old the universe is, and how life arose and became diversified, inform human beliefs about their purpose and their place in the universe. And, they impact the complex web of powerful social institutions that create and enforce philosophical and behavioral norms.

The Copernican theory gutted the authority of the Catholic Church and, to a significant extent, of the Christian religion, because it challenged the veracity of these institutions‘ teachings – teachings which, in order to hold moral authority, had to be absolute and infallible.


So, the success of novel ideas depends upon more than their being provable by observation or demonstration; they must also have compatibility with fundamental philosophical, moral, ethical, social, and political paradigms of the culture, and, of course, be technologically and economically feasible. They must also, critically, have credible, articulate and aggressive advocates.


As it turns out, there are, very broadly, two ways that paradigm changing ideas can be introduced into cultures. The first and easiest is by SEDUCTION: Incremental (limited) powerful desire for benefits absent any understanding of understanding of detriments (including destruction of the existing order). The second way is by INSURGENCY: Organized, forceful and determined effort to establish a new paradigm by subversion of the existing order.


Perhaps the best example of introduction of an idea by seduction is that of agriculture. Sometime between 100,000 and 80,000 years ago, humans began to make the transition from a hunter-gather life-style to agriculture. Today, we take agriculture for granted and we by and large uncritically accept it as an unblemished good.

However, the goodness or desirability of agriculture is hardly the picture of universal plenty that comes to mind when the word is uttered today, 100 or so millennia after agriculture was invented. In the context of hunter-gather society, agriculture was an unmitigated disaster that completely destroyed their culture, religion, way of life, and ultimately, much of their health and well being.


Hunter-gatherers controlled their population size, lived in small intimate groups, and were constantly on the move. Because they moved frequently they did not ingest or come into contact with their own wastes, or the wastes of the animals they fed from. They lived their entire lives in the open air under uncrowded conditions, and they ate a nutritionally diverse diet that was almost completely devoid of empty calories. As a result, they had little or no communicable infectious disease: no typhoid, cholera, or other water borne illnesses that result from fecal contamination of the drinking water supply.

In addition, group size was far too small to sustain communicable epidemic diseases such as smallpox, measles, mumps and tuberculosis (TB). TB, in particular, is an urban disease that requires close quarters and poor ventilation to be self sustaining and epidemic. It is also a zoonotic disease: one acquired from living commensally with animals – a necessary facet of agricultural life.

The quality and quantity of the hunter-gatherer life was thus both surprisingly high and long. Paleolithic man appears to have had a mean lifespan of between 45 and 53 years. Morbidity was brief and death came suddenly from misadventure or homicide. With the advent of agriculture during the Neolithic, life spans plummeted and remained well below hunter-gatherer levels until the first decade of 20th century in the US, and not until mid-century, globally.


The toll exacted by agriculture in terms of human suffering was immense. Agriculture allowed for a rapid expansion in the number of humans at the cost of hunger, starvation and an almost unimaginable disease burden. Cities became not only possible, but necessary, and up until the 19th century they were veritable killing machines which sucked in the surplus population generated by satellite farming communities and killed them off with infectious disease and dangerous working conditions. Cities did not become self sustaining in terms of population until late in the 18th century!

It seems clear that if our hunter-gatherer ancestors understood that agriculture would virtually exterminate their way of life, and create millions and even billions of starving and dispossessed people, they would have fled from it and burned the first would-be farmers alive. This didn’t happen because the immediate benefits of agriculture were so overwhelming: the ability to create a steady, seemingly reliable supply of food in superabundance was incredibly seductive.

Seeing the downsides was a virtual impossibility for people in those circumstances who lacked the scientific method, lacked the written word, and had little experience with new ideas or rapid change.


A similar state of affairs pertained in the late 18th and early 19th centuries when the Industrial Revolution began. The Industrial Revolution allowed for the prodigious production of high quality goods on a scale previously unimaginable. It created a cornucopia of wealth allowing the average man, and even the poor man, to enjoy goods and services that previously royalty, or the richest of the elite, could not have purchased at any price. The human cost of this was, again, very high: child labor, dangerous working conditions that crippled and maimed, and a reduction in air and water quality that killed thousands at a time often in the space of few days.


And again, as with agriculture, the Industrial Revolution was a fiat accompli before our species began to understand the adverse global environmental impact and come to the realization that the whole foundation of technological civilization was not sustainable. Hunter-gatherers lived in ecological balance with their environment; technological man cannot. To sustain ever advancing technology man must expand his environmental horizons into the solar system, and beyond.


Finally, telecommunications are an example of paradigm changing scientific advance operating via seduction.


Within my lifetime TV, mobile phones, and the Internet have transformed the culture and degraded or destroyed some of its more cherished institutions.


This tableau is how I grew up: the evening family meal taken in a stereotypical fashion with lots of opportunity to talk and socially interact with both my parents, and with members of my extended family. It was not understood by any of the participants to be a critical element in a cohesive and functional family life – it was just something everyone did and took for granted. But, in fact, it was (and is) a critical tool for facilitating communication, and allowing time and the proper conditions, to reflect on the day‘s events and consider what was necessary to be done tomorrow.


This slide lists but a few of the social and cultural sea changes caused by telecommunications with a high profile casualty being that family meal together, where people with comparatively uniform values and experiences communed with each other.


Not all novel paradigm changing ideas are seductive. Many are immediately and rightly perceived by the culture to be dangerous to the established order; ideas which can overturn political and social control mechanisms and completely disenfranchise, or even destroy bedrock institutions.

Because ideas about biology and medicine impinge upon the territory of religion in explaining man‘s purpose in the universe, and also on providing comfort and succor to the sick and dying, they are particularly scrutinized areas in terms of their compatibility with the hard core of the existing scientific paradigm – a paradigm in which the culture and its most powerful institutions are heavily invested.

Natural Selection, Germ Theory and Scientific Surgery created serious threats to the existing order that were immediately appreciated.

All of these ideas challenged the traditional view of Vitalism, and were steps towards “reducing” man, and indeed all living things, to the status of mechanisms: clockworks that could be rationally explained, understood and eventually manipulated at will. These novel ideas had the power, at least in theory, to confer on men the knowledge and ability formerly reserved only for god. If life was a natural phenomenon governed by the same physical laws that enabled the construction of timepieces, factories, bridges and manufacturing machines, what was to stop man from creating life itself and, in essence, usurping the role of god?

Insurgent attack on the hard core of critical paradigms is dangerous…


The culture quite rapidly comes to understand that such ideas are exceedingly dangerous and almost invariably takes extra-scientific steps – social, political and economic – to protect the existing paradigm and defend its hard core at almost any cost. The fate of Galileo for promulgating Heliocentrism is a classic case in point. And Galileo was lucky – extremely lucky. His fate was to be forced to recant his heretical ideas and spend the remaining years of his life under house arrest.


By contrast, consider the fate of Giordano Bruno, the Italian Dominican friar, philosopher, mathematician and astronomer, who is best known as a proponent of the infinity of the universe (his cosmological theories went beyond the Copernican model in identifying the Sun as just one of an infinite number of independently moving heavenly bodies: he is the first European man to have conceptualized the universe as a continuum where the stars we see at night are identical in nature to the Sun).

He was burned at the stake by the authorities in 1600, after the Roman Inquisition found him guilty of heresy. Challenging the hard core of critical scientific (and thus social, cultural and political) paradigms is dangerous and often deadly…



…and at the very least it is inconvenient, incredibly unpleasant, and costly.

The real reason the Dora Kent drama played out was that cryonics, practiced well (optimally) caused extreme cognitive dissonance in the medical and legal authorities in the community in which we were operating. Over and over again they kept badgering me with the statement that, “Two minutes was NOT long enough to wait after cardiac arrest before starting cryonics procedures.” To which I responded repeatedly, “Well then how long is long enough? How dead does someone have to be before it is OK to start working on them? You define death as when cardiorespiratory arrest occurs; you say nothing about what can or should be done afterwards.” They found that enormously disconcerting and it made them angry, really angry.


So, if we look at cryonics objectively and in the context of this culture and this civilization at this time, then cryonics is just about the most disruptive and threatening idea that has ever come along. Unlike Natural Selection or Germ Theory, or even Heliocentrism, cryonics will inevitably overturn the Vitalistic view of life, challenge the conventional definition of death, erode the need for a mystical afterlife, invalidate the core tenets of contemporary medicine, and radically redistribute capital and disrupt inheritance, bequests, and mortuary customs!



What‘s more, it mandates a complete change in reproduction, perturbs generational succession, requires space colonization, requires (and supports) profoundly disruptive technologies such as cloning, regenerative medicine, nanotechnology, and AI, and most frighteningly of all, it Ends the Species and enables Transhumanism.

Cryonics is Profoundly Disruptive of the Hard Core of Contemporary Civilization Creates Survivorship Guilt; Indefinitely extends anxiety and uncertainty accompanying life-threatening illness; Prevents the psychological closure of  “true” death with disposition of remains; Creates indefinite anxiety about the well-being of cryopreserved loved ones.


Beyond these inevitable long term effects, cryonics has a number of poorly appreciated (by cryonicists) severely psychologically damaging adverse effects. As Curtis Henderson once observed,  “All biographies end in tragedy; everybody dies. Always.” A consequence of this is that no one need feel guilty about living – in the end we all end up dead – there are no survivors.

Cryonics changes that, because people now living have an opportunity to possibly ‗cheat‘ death, and that means that if they choose to do so and succeed, they will have to face the prospect that they did not act quickly enough, or aggressively enough, to save the lives of all their other loved ones who have died or will die and not be cryopreserved. This survivorship guilt can be crippling, and in some cases all consuming – but at the very least, it is always painful.

One of the few advantages of death is that it is final. It puts an end to the suffering and anxious uncertainty that must inevitably accompany life threatening illness. Anyone who has agonized over the fate of a loved one in the Intensive Treatment Unit (ITU) can at least begin to understand the psychological impact of stretching out that period of uncertainty over a lifetime, and beyond.

The devastating effects of this kind of limbo are often seen in cases where children are abducted and not found, or soldiers are lost in battle, but no remains are recovered. Cryopreservation prevents the psychological closure of ‗true‘ death with disposition of remains and creates indefinite anxiety about the well-being of cryopreserved loved ones. Cryopreserved people are not put away in a cemetery where no further harm can come to them. Rather, they require indefinite care, vigilance and protection. This is often a source of extreme anxiety in survivors.


These immediate detrimental effects of cryonics become intensified during the terminal phase of a cryonics patient‘s life. The presence of the Standby/Stabilization team and their equipment and supplies disrupts intimacy during the “dying” process, may bitterly divide family members (those opposed vs. those in favour), and block deeply held (conditioned from childhood) mechanisms for coping with death and bereavement: no wake, funeral, and other comforting rituals.

With the understanding of these general and largely unavoidable obstacles, we are now prepared to examine in greater detail the specifics of why cryonics failed to launch in 1964.

 End of Preface and Initialization Failure, Part 1

]]> 6