CHRONOSPHERE » brain cryopreservation A revolution in time. Fri, 03 Aug 2012 22:34:48 +0000 en-US hourly 1 When a Singularity Bites You in the Ass Sat, 31 Mar 2012 07:56:39 +0000 chronopause Continue reading ]]>  How to avoid autopsy and long ‘down-time’

(ischemia) ~85% of the time!

By Mike Darwin



It has taken me roughly 30 years to learn that having the technological capability to achieve some marvelous end is only a small part of the battle to actually achieving it.  This is profoundly true in the world of biology and medicine because, unlike as was the case with “free speech” and “private life,” there was no Martin Luther and no Thomas Paine to definitively divorce these areas of human endeavor from the grasp of the religious moralists, the secular ethicists, and the social busybodies of the earth. The life sciences have yet to have their Martin Luther’s 95 theses nailed to the doors of the places in which this culture’s moral tyrants currently reside. The separation of Church from private life which began with Luther, and of private life from state, which began with the Magna Carta and the US Declaration of Independence, could take us only so far.

Now, we are in an interesting place and time, because never before have potentially lifesaving technologies been being generated at such a phenomenal rate. And yet, they remain outside our grasp as surely and solidly as if there were an impenetrable Prespex wall between them and us. We can look, but we can’t touch.

Beyond our physical inability – or seeming physical inability – to access those lifesaving capabilities, we also pay a heavy price in a different way. Our vision and perspective becomes warped. We literally become unable to see how we might help ourselves, because we have been conditioned to be dis-empowered. We lose the ability to think outside the box and we begin endlessly replaying the failed or marginal strategies that the existing system does allow us to pursue.

However, a close look at our predicament will reveal that that Perspex wall works mostly for the masses – for them – and not for us. If we are careful and clever, we can reach through it and extract much of the technological benefit sitting there. We can do this, but they can’t. Once we understand that, it has the potential to change our perspective on everything in terms of our chances for survival, and for our chances of living productively and in comfort, while much of the rest of world may well pursue a very different path.

That’s what this article, and the ones that follow it, are about. This article is preparatory, it’s a kind of foreplay to prepare you for the powerful penetration of the ideas that are to follow.

Of  Singularities & Hams

Figure 1: Jamón ibérico de bellota is a gourmet ham made from black Iberian pigs fed only acorns during the months prior to their slaughter.

 The first few times it happened, I hardly noticed, and I can’t remember the specifics. But when it really began to annoy me I can  remember, quite clearly, perhaps because I was already in a foul mood and the surroundings were extraordinary. We had been taken out earlier in the day to see the pigs from which the jamón ibérico de bellota is made. The vile, dusty, slobbering and altogether horrid beasts are fed nothing but acorns so that their flesh is rendered especially succulent and flavorful after elaborate smoking and aging. They were moving about with indifferent belligerence, unaware that their kin were to  be on the supper menu late that afternoon. The visit to their quarters made me thankful I did not eat land vertebrates and reminded me uncomfortably of some of my compadres at the Hacienda; the several “Mr. Bigs” who had gathered to discuss the creation of a new cryonics enterprise.

As we sat down to dinner in the courtyard of the Hacienda that evening, I was seated at a table with several middle aged cryonicists and two older ones, (sadly, including myself). It wasn’t long before I was bombarded with the question I would soon find irritating, and eventually come to loathe: “Have you had genomics testing done?”

Figure 2: The courtyard of the Hacienda where my dinner companions assailed me over my lack of diligence in having my genotype analyzed to determine my disease risks.

“And why would I have that done, I asked?” My questioner, an enthusiastic thirty-something, leaned forward a bit and explained to me how rapidly the cost of sequencing DNA base pairs was dropping, and that it was now possible to tell all kinds of things about an individual’s risk for diseases by genotypic analysis.

“It costs only  $200 US; I just had mine done.”

Others began to chime in. Since it was an international crowd, the stories were fascinating and I was content to listen. Some had discovered they had Neanderthal lineage, others had discovered less exotic, but no less unexpected genetic heritage. Finally, the conversation returned to me, the apparent elder statesman and, presumably, the example setting cryonicist at the table: why hadn’t I had my genotype evaluated, and much more importantly, why didn’t I have any plans to do so?

“Look, ” I said, “I think genomics  technology is going to be incredibly valuable. I think its most immediate value is going to be in pharmacogenomics – in determining which drugs work for which individual people and which drugs don’t work, or are actually dangerous for given individuals. A bit later, this technology will likely have real prognostic value. But not now, and not for me. I’m in my early-50s. My relatives are already sick, dying or dead of illnesses that are genetically mediated. I know what my genetic risks are. In fact, from my family history alone, I’ve known what those risks are for roughly 20 years now. Both my parents are now in their 80s, and I have a very good idea of what they are going to die of. And if they don’t die of those things, well, it will be from an accident, an infection or something not likely to be readable in the tea leaves of my genome.

 Figure 3: The Hacienda on the arid Spanish countryside outside Madrid where we took our repast and discussed singularities, past, present and future.

Interestingly, my parents have had every single disease that has also killed their parents, their aunts and their uncles: cancer, hypertension, atherosclerosis, alcoholism, type II diabetes, and Alzheimer’s Disease (AD). I’m pretty sure that AD is going to claim my mother’s life, and I’d say it is probably down to atherosclerosis, and possibly cancer or emphysema, in the case of my father. With the help of modern medicine, my folks have so far dodged all of the other genetically mediated bullets that have been shot at them. So, I know my genetic risks  (and to those I’d add the risk of some peculiar autoimmune diseases in late life are present in my maternal bloodline).

But by far my biggest risks, which would not yet (to my knowledge) show up on any genotypic test are Bipolar-2 Disorder and homosexuality, both of which have a devastating impact on longevity, dramatically increasing the risk of a broad range of pathologies, including cardiovascular disease, cancer, dementia, substance abuse, other mental illness, and all cause mortality. My point is that in most cases where genes influence destiny, you’re best clue is the evolved or evolving fate of your kin – unless you are an anonymous orphan, that is.”

Still, they wouldn’t give up. The implication was that I must have genomic testing. And, truth to tell, I had, and have, no objection to it. It’s not like I am opposed on religious grounds, as if it were fortune telling. “In fact, I think it’s a nifty conversation piece and personally interesting in the bargain. It’s just that I’d have a lot higher priority uses for my $200 in terms of the dramatic medical advantages it could buy me as a cryonicist, if I had $200 to spend on such things! It would make a wonderful Newton Day gift, the kind of thing you’d like, but would never buy for yourself.”

Now that, that statement really set them off! I had thrown gasoline on a fire. Didn’t I know that the exponential decrease in the cost of DNA sequencing constituted a Singularity in biomedicine, one that was, even as were sitting there that very moment, revolutionizing medicine? “Sure.” I said, “But  there are singularities happening all the time. The thing is, most singularities in medicine unfold over a period of decades, and very few individual patients gain benefit from them on the basis of special, unique, or insider knowledge.”

But, I had lost them. They were having none of it, and I wouldn’t be the least bit surprised if I’ve lost you as well. I was irritated and frustrated and I had already lost my temper badly earlier that day. So, I decided to bite my tongue and proceed in relative silence with the rest of the meal. But what I really wanted to say to those gentleman was that, “you wouldn’t know what to do if a medical singularity were to come right up here and bite you in the ass, because it already has!”

One of the (many) reasons the meeting had crumbled was the intransigence of one of the Mr. Bigs, who wanted cryonics with the stipulation that there be essentially no ischemic time. He had his approach to solving the problem which was, well, this meeting was some years ago, and I wonder if Mr. Big is still alive?

It was a strange situation. Mr. Big was clearly not a well man and he knew this to be the case. What I suggested was straightforward, involved nothing either exotic nor illegal and was something that I knew would work, based on the sorry experience of seeing it not work with men exactly like him. I tried to explain to Mr. Big that it was now possible to “simply” look inside of him, from top to bottom, and get a fairly accurate assessment of what his risks were for deanimating in the near future. Given his medical history, which he shared with me,  I also suggested that he have a condition treated which would, probably sooner rather than later, cost him his life, or leave him profoundly disabled. He was having none of that, either!

Instead, a few hours later, here we were seated together at dinner and Mr. Big was extolling the virtues of genomic testing as a way of avoiding premature cryopreservation-  to me.  A true, nearly unalloyed medical singularity had arrived for cryonicists, and for the previous two days they had snuffled and shuffled around each other with same indifferent belligerence of the hogs in the pen nearby who were awaiting their conversion to jamón and their journey away from the Hacienda in someone’s belly. It is at moments like this, which come with increasing frequency, that I sneak a quick look out of the corners of my eyes to see if I can catch a glimpse of some dimple or ripple in the fabric of reality that will clue me into the fact that my life has really been just a joke in very poor taste  – on me.

I’ve struggled mightily with how to effectively communicate the idea that for cryonicists, a singularity of truly incredible magnitude has arrived and that it is one which, in theory, should be available for use by us now. I’m reasonably sure I’ll fail in that task and that no matter how I might have framed the argument, or presented the evidence, the outcome will remain the same. And therein probably lies yet another powerful lesson about why Singularities, wherein everything is transformed in the blink of an eye, never really happen.

How ‘Fast’ are Most Medical Singularities?

Medicine, ironically  much more so than entertainment or warfare, is bound up with the sensitive issues of ethics and morality, which have historically complicated and often slowed the propagation of paradigm changing, or so called “singularity events” within its confines.  Vaccination, contraception, anesthesia, organ transplantation, mechanical life support, resuscitation medicine, in vitro fertilization and embryo and gamete cryopreservation have all been slowed or blocked altogether as a result of religious or ethical concerns. (1,2,3) Indeed, surf the net or turn on TV today and you will see hordes of angry people decrying vaccination, contraception, and arguing furiously over life support. Support for vaccination, ~212 years after Jenner, is even eroding in the nation that spawned it!

The idea that wound infections – sepsis – were caused by a contact-transmissible agent was definitely proved by 1848, in the form of the exhaustive statistical work documenting the effectiveness of antisepsis conducted by Semmelweis. By 1860, the theoretical grounding for the basis of that transmissible agent, germ theory, was in place. Scattered throughout Europe there were a few men who understood the new paradigm and could no doubt foresee many of its practical implications in medicine. These men must have been as frustrated as cryonicists in the middle of this last( 20th) century – men like Pasteur and Koch. If ever there was a singularity in medicine, this was it. And yet, what happened?

Figure 4: President (then General) Robert E. Lee of the Confederate States of America receiving his critical Magic Lantern briefing on the revolutionary, but heretofore unappreciated work of the Hungarian physician Dr. Ignaz Phillip Semmelweis, concerning the importance of antisepsis for the control of infections in battlefield and surgical wounds. The information proved of a vital strategic advantage in helping the Confederacy to successfully prosecute the war against Union forces. Lee is seen here in the sitting room of his home in Arlington, Virginia in this classic painting by John Elder.

Perhaps it might be more instructive if we ask ourselves what should have happened according to the Singulatarian, or even according to the “popular” model of how  powerful, beneficial ideas with virtually no downsides spread through the culture. For instance, one of the most popular “what if” questions in the realm of alternate history is, what if this or that had been different that would have altered the outcome of the United States Civil War?(4) Military historians all have their favorite “what ifs” in this regard, but mine, well mine wouldn’t be military at all, but would come down to a long, drawn out Magic Lantern (PowerPoint) presentation given to a very receptive General Robert E. Lee, on the eve of the Secession. The subject of that presentation would be the revolutionary findings of two maverick Europeans; Dr. Ignaz Philipp Semmelweis, and  Dr. Louis Pasteur, as they apply to battlefield medicine and the recovery and survival of injured troops in the conflict to come.  The Confederacy lost the war for many reasons, but in the end it came down to a lack of manpower and the disproportionately draining and depressing effect that combat related sepsis had on the South. [At least, that's my story and I'm sticking to it ;-).]

Lee would listen, his military surgeons would be briefed on the Confederacy’s “secret weapon” and the tide of history would be turned. Wild and playful imaginings? Yes, but they constitute a considerably more reasonable scenario for the rapid adoption of asepsis in the US (or even half of it!) than just about any other you are likely to come up with, because the reality of what happened is almost incomprehensibly tragic.

Figure 5: In his magnificent painting entitled The Gross Clinic, Thomas Eakins graphically captures the state of surgery in the US during the decades following the US Civil War. These grotesquely unsanitary conditions had by this time to a large extent become a thing of the past in surgical theaters through much of Europe.

Figure 6: Even 14 years later, when Eakins revisits the them of the operating theater in his painting The Agnew Clinic, full adoption of asespsis and antisepsis had not occurred in the US.

Semmelweis’ work had already been published and disseminated around Europe by 1848, and by 1861, the year the American Civil War was opening, Lister was reprising Semmelweis’ discovery of antisepsis in Scotland, not with chlorine, but with carbolic acid. The sad reality was that the Americans (North and South) were so pigheaded regarding germ theory and the value of asepsis and antisepsis to medicine, that it would not be until well into the 19th century before that particular singularity fully took hold of the United States.(5)

Indeed, Lister made an “evangelical” tour of US medical schools in 1876 to little avail.(6)  Whilst the Listerian revolution was well underway in Europe by then, the situation in the US was to remain, as it was so vividly portrayed by Thomas Eakins in his magnificent oil, The Gross Clinic, which was painted the year before Lister’s missionary visit to the germ loving heathens across the pond. Fourteen years later, when Eakins painted The Agnew Clinic, we can see the beginnings of asepsis just starting to take root in the form of basic cleanliness being imposed in theatre. Clearly, antisepsis/asepsis are an example of a technological singularity in medicine, albeit one that took onto a century to fully unfold!

The Problem of Bite Back

But beyond these arguably irrational roadblocks slowing the progress of technological singularities in medicine, there are two others: the very real problems of their rational management on both the macro and the individual (patient) scale.

Figure 5: Edward Tenner’s excellent book, Why Things Bite Back explores many examples and a number of reasons why technological advances often fail to reach their expected potential, and in fact, not infrequently turn out to be self limiting, or even self defeating.

Some of the technological singularities just listed, vaccination, for instance, can have very serious practical, economic and societal consequences. Rapid and widespread introduction of vaccination into equatorial Africa by Christian missionaries, absent the concurrent introduction of agricultural and other infrastructure, resulted in a population explosion and mass famine which has not abated to this day. Oral contraception has resulted in huge demographic and social changes occurring within a single human generation; a heretofore unprecedented event in the history of our species.

While medical advances are usually perceived as an unalloyed good for the patients who will benefit from them, this is rarely, if ever the case. The discovery of x-rays opened the interior of the human body to non-invasive examination, but it also exposed the patients so viewed to initially unsuspected exposure to damaging radiation – a problem that persists in radiologic medicine through the present. Beyond the problem of unforeseen or unknown dangers, there is also the problem of technological bite back, or what Edward Tenner has called the “revenge of unintended consequences.”(7) This is a major adverse effect of technological singularities, and one which often robs them of much of their anticipated bounty – not just for societies, but for individuals as well.

As I’ve just pointed out,  new medical technologies are sharply constrained in their utility at their start due to our inexperience with their bite back potential, and with the possibility of unknown  direct adverse affects of the technology  itself. However, every great once in awhile there are peculiar exceptions, and it just so happens that cryonicists are ideally positioned to enjoy just such an exception, starting now.


1. Fasouliotis, Sozos J, Schenker, Joseph G, TI, Cryopreservation of embryos: Medical, ethical, and legal issues. Journal of Assisted Reproduction and Genetics. 13:10 56-76;1996.

2. Simmons , RG, Fulton , J, Fulton, RF. The Prospective Organ Transplant Donor: Problems and Prospects of Medical Innovation. OMEGA–Journal of Death and Dying. 3:4;319-339:1972

3. Carrell. JL, The Speckled Monster: A Historical Tale of Battling the Smallpox Epidemic, Dutton, 2003, ISBN-10: 0525947361.

4. McKinlay, Kantor, If The South Had Won The Civil War, Forge Books, 2001, ISBN-10: 0312869495.

5. Murphy, FP, “Ignaz Philipp Semmelweis (1818–1865): An Annotated Bibliography,” Bulletin of the History of Medicine 20(1946), 653-707: 654f.

6. Herr, HWJ, Ignorance is bliss: the Listerian revolution and  the education of American surgeons. Urology;177:457-60,2007.

7. Tenner, EW, Why Things Bite Back: The Revenge of Unintended Consequences, Vintage, 1997, ISBN-10: 0679747567.

]]> 12
Your Picture Won’t Be Hanging Here? Sun, 25 Mar 2012 03:52:35 +0000 chronopause Continue reading ]]>  

Reception area of the Alcor Life Extension Foundation in Riverside, CA in April of 1987. The photos above the refreshments cart were of some of the patients in Alcor’s care at that time.

Sometimes we get defeated by technology, sometimes by cluelessness and sometimes by a most unexpected intersection of the two.

In 1981 I conceived of the idea of hanging the picture of each patient cryopreserved at Alcor on the wall of the facility. I intended the practice to start, not in the place where it might seem obvious for it to; in the patient care bay (PCB) as a memorialization of the patient for his family and friends, but rather, in the reception area and offices, where the organization’s staff dwelt on a daily basis. It was my intention that as the patients accumulated in the PCB, the photos would begin accumulating in the offices, laboratories, corridors and workspace of the Alcor staff.  The intention was to provide a not so subtle reminder that there were people in those big stainless steel tanks, people who were desperate to get out of there.


Photos of Alcor patients apparently spilling off  (?) the walls in the conference room at the Alcor Foundation’s facility in Scottsdale, AZ in April of 2011. Photo courtesy of Stan Lipin

My intention was that, over time, there would an inverse and very adverse relationship between “success” in terms of patient population growth and “failure” in terms of growth in the number of pictures on the wall. In time, I envisioned (with some glee) the framed photos multiplying like locusts, becoming ever more oppressive and occupying ever more wall space.  I foresaw that they would likely encroach into the PCB. I also thought it likely they would be downsized. But mostly, I hoped they would serve their primary function, which was that each one was to serve as a reminder to those working at Alcor: “Hey, I’m still waiting, get me out of here! I want to get back to living, just like you are, too!”

This was not an idea which I kept secret. It was frequently discussed with other Directors, with staff, even with the officers and directors of other cryonics organizations. In fact, I now believe it is a practice which has become universal at cryonics organizations around the world. Or should I say, had become universal.

Alas, I hadn’t counted on technological advance. Technological advance is almost always a “two sided blade” and is this case, the blade cut in a way I hadn’t at all foreseen. The digital photo frame makes it possible to store essentially an “infinity” of images, and display them all in the physical space occupied by just one, over short sequences of time. In so doing, it removes the clutter, and thus the annoyance of hundreds or even thousands of actual framed, photographic images. One problem solved.

And another created. The purpose of institutions is to attempt to overcome the most damaging consequences of human mortality to civilizations: the destruction of knowledge, wisdom and the values they enable. In short, the loss of memory and accumulated experience that comes with the death of individuals.

Enter the halls of any civilization’s venerable institutions and you will see the images of the individuals they treasure on their walls and of those individuals’ ideas encoded in the books lining their shelves and engraved in the form of quotes and aphorisms on their walls. Stroll their great cities, or the corridors of their museums and you will see statues and likeness of the persons they treasure and admire cast in bronze and carved in stone; all these things are feeble attempts at conserving the ideas and values of the individuals who created the intellectual capital that sustains their civilizations. It is not just that they owe these men personally (they do) it is that these civilizations survive by remembering and living by the ideas that these men created.

Unfortunately, it turns out that ideas, standing alone and absent the context of memory, are weak things. It is one thing to know that fire burns, and another thing altogether to know that fire burns having been burnt by it. It is the power of knowledge in the context of experience that is wisdom, and it is wisdom that is destroyed by death. Knowledge contained in books, or nowadays in digital form, is but a shadow compared to that contained in the mind of a man who knows the real truth of a thing in the context of personal, hard won experience. Feeling, guided by reason over time, is the most powerful tool in the universe; and death is its ultimate enemy.

The human institution (first as oral tradition) followed by the written word, were man’s initial tools against death. Poor instruments that they were, they were used to fight valiantly in an attempt to conserve the memory of what was – a story of people, places and events over time. They were, to a remarkable degree, successful. The Royal Society is almost unbelievable in this regard, with every scrap of correspondence and every minor triumph and squabble being recorded and preserved. So are many neighborhood British garden societies – many going back hundreds of years. This will be true of every successful human institution from enduring religious institutions such as St. Catherine’s monastery in the Sinai, to the fraternal organizations such as the Masons in the US.

Robert Ettinger (left).

With the advent of scientific medicine and Ettinger’s book in 1964, it has become scientifically credible for human beings to reach for personal biological immortality and thus, for the first time, for a credible and a definitive “end to death.” Because what death really is, is the destruction of human knowledge and wisdom, and that is always and necessarily rooted in the destruction of individual humans. Wisdom, in particular, is uniquely a property of individual persons, and so is creativity. Neither of these fantastical properties which create and drive civilization can be distilled into books, carved into stone, or molded into bronze or plastic.

To achieve immortality for individuals it will be necessary to utilize the structure of institutions. It should be abundantly evident that such institutions will necessarily have to be the most stable and durable of those which human beings have so far managed to engineer. As such, they will have to most emulate that property which human institutions were created for in the first place: the conservation of memory of persons, places and events in order to conserve values over time. This why institutions incessantly speak of things like “grand old traditions” and “institutional memory.”  Admittedly, it is a hard thing to do. And it is a perilous thing to do, because it relies upon successful prognostication of the future; that the ideas and values selected for conservation and propagation over the ages are the ones essential for success; and that the ones not essential, do not discredit those that are.

Inherent in cryonics is a terrible arrogance and optimism which attracts a kind of people who seem to possess an inborn contempt for, or incomprehension of the value of the past. This is evident in their own disregard for it. There is a shocking lack of historical conservation at both CI and Alcor. In fact, it is so shocking and all pervasive that I know that my words here will have virtually no impact on almost all who read them, because no one,[1] at either place has any idea of what I’m talking about. It is, literally, the equivalent of talking to people who have never seen books, about how shocking it is that they don’t have libraries.

Organizations that are clueless about their own (recent) historical past should, not surprisingly, also be clueless about the deeper reasons for things like pictures of patients hanging on the walls. A few years ago, I was talking with one of the (many) former Presidents of Alcor who had a question for me about  something in a member’s paperwork. This President wanted to know what “BACS” was? Now, I am old. In fact, I’m a little older than cryonics (by about 9 years). But that still only makes me 56, not 156.  I felt a little like I do when I see anyone in the US being stopped on the street and asked questions like, “Who is the Secretary of State?” or “Who was Abraham Lincoln?” and the response is an utterly clueless answer.

If you’re an average reader here, and you don’t have a clue, that’s OK, because there really is no cryonics community to get acculturated in. The answer is that the Bay Area Cryonics Society (BACS, they changed their named to the American Cryonics Society, ACS, in 1985) was the dominant cryonics organization in the world from ~1974-1984! That’s a third of all of cryonics history and it’s not that long ago.  To not know that and to be running the world’s largest cryonics organization seemed wrong to me. Not because it was wrong per se, but because it was inevitably a marker for what had to be a veritable iceberg of other missing information that was of far greater import. And even that isn’t necessarily a fatal flaw. Realizing a deficiency of knowledge or character or resources, even a spectacular one, and working hard to remedy it is the oldest heroes’ tale in the world.

Of course,  it isn’t really practical to keep putting up pictures of Alcor’s patients on its walls. At some point, I’d have expected that they would have started to spill out, rather indecently, onto the grounds. And perhaps, if the problem persisted far enough into the future, they might start turning up, well, who knows where? And continue to do so until the problem was solved.

The problem to be solved being not the clutter, nor the barrier to tasteful decorating, nor to efficient housekeeping, but rather, the problem of how to make their number start decreasing, rather than increasing. That is, decreasing by some expedient other than by gathering them up into a digital dustbin where they are granted increasingly smaller and smaller and smaller access to the living human eye, as time goes by.

How terribly (horribly) convenient.


After writing this piece it occurred to me that many might dismiss it as a case of “sour grapes;” of an “old man” failing to keep pace with the times. I don’t believe this is so and I think a good analogy is the AIDS Quilt.  Imagine if the AIDS Quilt had, because of its bulk, logistical inconvenience, and in your face anguish effect, had been replaced with a single (or several) flat screen “quilt display” monitors?

The effect would hardly have been the same. At issue here is not the technology, per se. I can imagine a number of ways to use digital technology far more pervasively, far more more subversively, and potentially even more durably than analog photographs, or stitched pieces of fabric. I’m not an analog Luddite. Indeed, I’m using digital technology in just such a”creative-subversive” way right now.

The point is that it must be used in such a manner – transformatively, transcendently and creatively – not as a band-aid convenience to assist with interior decorating to “reduce clutter” or “ease housekeeping.”

That is the clueless failure of vision, understanding and institutional memory I’m addressing here.


[1] Dr. Mike Perry is one exception that I know of.

]]> 18
Bon Voyage, Fred Chamberlain Sat, 24 Mar 2012 09:31:07 +0000 chronopause Continue reading ]]>

By Mike Darwin

Me and Mei Lei, settling down after dinner and a peek at the heart of the time machine, which was then kept in a shed in back of the the Chamberlains’ home in La Crescenta, in 1973.

I was an 18 year old kid feeding quarters into a payphone in front of a Piggly Wiggly grocery store at 9 o’clock on a summer night in 1973, in Augusta, Georgia. On the other end of the line was a middle aged aeronautical engineer in La Crescenta, California, not far from the Jet Propulsion Laboratory, feeding me dreams. He wasn’t telling me about the spaceship he was working on to explore the outer planets, instead, we were talking about the time machine he was building to take us to the future. You see, I was helping him with the design – my part was the bubble trap, where pressure and temperature would be measured.

The “front-end” of the “time machine” in 1973, before the bubble trap was designed, fabricated and installed.

The engineer’s name was Fred Chamberlain, and we had met the year before at his home where he, his wife Linda and I had had dinner and had looked over the various parts of the time machine project. It was then that I noticed that the device was missing a critical component – a bubble trap – a device to prevent dangerous air bubbles from entering the circulatory system of the time traveler. Fred immediately saw the importance of the oversight and I set about designing a bubble trap that would fit into the device as he had already configured it.

The glass bubble trap for the “front-end” part of  the “time machine” in use to perfuse Fred’s father in 1976.

We had been in correspondence for several years before we  met. Though I was just a boy, we shared a dream to voyage into space and conquer the stars. To do that, both of us understood we would have to become time travelers, because we were trapped in a time and place that was wholly unsuited to our ambitions and aims. We had been born too soon. We were doomed to grow old and die before our species mastered the technology to venture forth from the world of our birth and set sail into the cosmos. The only way we could see out of this tragedy, Fred, Linda and me, was to become time travelers, in fact to become a very special sort of time traveler – medical time travelers.

Linda Chamberlain in 1974.

What kid, then or now, wouldn’t kill to have a life like that? Isn’t that the stuff that dreams are made of and the juvenile SF novels are plotted around? Nobody has a life like that and everyone knows that a story like that couldn’t possibly be true. Have Spacesuit Will Travel? No doubt. Have time machine? Well, then then you’ll really go places!

The working heart of the time machine!

And yet, every word I’ve written there is true, and I’ve got the pictures to prove it; and you’ve just seen them.

Fred Chamberlain was a NASA-JPL electrical engineer working on the Mariner-Jupiter-Saturn mission in 1973, and we had that conversation and many like it. And we planned the mission Fred began yesterday and many more like it before, and to follow. The time machine we were working on was actually for a “fourth” of us, not mentioned in my story, Fred’s father, Fred, Jr., and it was indeed used to launch him on his journey on 16 July of 1976. And yes, my bubble trap was an integral and a successful component of that mission.

Fred, Jr., and Fred, III, father and son, now time travelers awaiting rescue.

Frederick Rockwell Chamberlain, III was and is of absolutely critical importance to cryonics. While most people with more than a passing acquaintance with cryonics will associate his importance with the founding of Alcor, that is in reality only a surrogate marker for his deeper importance. Fred came on the scene in cryonics in what was unarguably its darkest hour. It had degenerated into little more than a fraudulent cult in California and, everywhere in the US, it had lost all vestiges of technical and scientific rigor.

When Fred discovered this in his role as Vice President of the Cryonics Society of California (CSC) he not only left CSC and founded Alcor, he and Linda Chamberlain established, for the first time anywhere, the practice of scientific, evidence-based cryonics; cryonics based on the scientific method, on documentation of procedures, policies, cryopreservation protocols and rigorous patient case reports. He and Linda mandated not only scientific and technical accountability, but administrative, financial and legal accountability as well.

Standardized procedures, protocols, equipment and meticulous documentation were critical elements Fred and Linda Chamberlain brought to cryonics.

In doing these things, Fred and Linda attracted and mentored others. Fred’s personality and his military background brokered no compromise and his mentoring profoundly shaped me and a few others, molding us into the irascible and generally disagreeable inhuman beings we are today. At one time Fred was responsible for replenishing the tritium supply of all of the hydrogen warheads in the US nuclear arsenal. Men given that responsibility do not suffer fools gladly.

Personally, Fred taught me a great deal about engineering; not about the mathematics of it, but about engineering at the systems level, about how to look at a complex problem and tease it apart without being overwhelmed by it. He had a fantastic ability to see and solve problems at a meta-level, and he was able to communicate that to others.

Fred Chamberlain helped to build three incredible machines all of which had their origin at roughly the same place and at roughly the same time; in the foothills of the Santa Monica mountains near Pasadena, California in the early 1970s. Two of these are the Voyager spacecraft, now on their way to the stars moving  through the heliopause at 16.6 km/s  and 19.4 km/s, even as I write this. The other, the medical time machine begun when I was a boy, even before that pay phone call in Georgia, is, for the moment, located in Scottsdale, Arizona and it is moving relentlessly forward with its precious cargo of time-stopped souls one slow day at a time. Godspeed to all of you!



 You can believe me when I say that I do have some idea of your loss. Only some, I’m sure. It has been a hell of a last few weeks for me, but nothing to what you’re going through now.

 Man, oh man! I miss him already, and I haven’t laid eyes on him in years.

 I remember all those years ago in La Crescenta, we were so young, and yet we were planning for this very goddamn eventuality. We were actually planning for it, thinking about it, talking about it, working towards it. We knew it would come, and in a weird sort of way, we hoped it would come, because the alternative would be that if it didn’t come for us at all, we would be one of the truly unlucky ones that fell through the cracks, like Marce did. Still, we have his loss to bear for now, and for some unknown seasons of tomorrows yet to come.

Fred (left) cryopreserving his own father, Fred Jr., in 1976.

But remember Linda, it was just yesterday that we planned for this day now so soon arrived – a plan that has been, as we so rightly foresaw, flawlessly executed. Now, let us be patient just a “little” while longer, and work again, just a “little” bit harder, so that we can awaken tomorrow, and find that that other day that we talked about, dreamed about, planned for and worked towards has also arrived, in which we find ourselves together again – not in “paradise,” but in this world, planning for, thinking about, talking about and working towards those other dreams that we had to put on hold, simply in order to survive.

Let us look forward to those goals and dreams and many, many more still undreamt and unimagined, to which we shall again apply ourselves when the tear-blindness of our grief subsides.

 Mike Darwin

Fred Chamberlain III: First Life Cycle: 1935-2012

by Linda Chamberlain


Fred Chamberlain III recently had his brain placed into cryostasis at the Alcor Life Extension Foundation in Scottsdale. His physical presence will be missed by many friends, biological family and chosen family until technology allows a future instantiation to be with us once again.

Among his many talents, Fred wrote inspiring poetry and loved to play the guitar and keyboard. He was one of the most intellectually creative and energetic people I’ve had the privilege to know. He just recently published BioQuagmire, which in my opinion is the best transhuman, life extension novel ever written. Fred (together with me and other authors) published a volume of life extension and transhumanist short stories in the 1980s called Life Quest.

The picture above shows Fred when he was in his twenties working in bomb disposal as a Navy diver. He was interested in ethics and was a strong supporter of Ayn Rand’s ideology. Fred became actively involved in cryonics in 1969 in order to get his father, Fred Chamberlain Jr., suspended (Alcor News, August 1976). Fred and I met and became Forever Buddies in 1970 while working on the committee to organize the second national cryonics conference, held in Los Angeles, CA.

Here we see Fred in his thirties, sitting on the rim of the Grand Canyon. He was an engineer at the Jet Propulsion Laboratory (JPL) in Pasadena, Southern California, where he worked on the Voyager missions to Jupiter and other fascinating projects.




That’s when I first met and fell in love with him. One of our great intellectual and emotional bonds was our interest in technological means of extending life. Fred and I incorporated the Alcor Life Extension Foundation in 1972; the minutes of those early Alcor meetings can be viewed by  those who might be interested. Many details from those early years are available on Wikipedia.



The photo to the right shows Fred in his 60’s when he and I were again active in Alcor between 1997 and 2001.




The picture on the left shows us in 2002 when we renewed our wedding vows on a beach in Cozumel with a traditional Mayan wedding with both of us wearing traditional Mayan wedding dress.

Inspired by the Mindfile tools and programs being developed by Terasem (including but not limited to and, and seeing Mindfiles as an absolutely essential part of any personal life extension plan, we moved to Melbourne, Florida in 2010 to contribute as much as possible to the Terasem Movement while we remain in biological bodies, and then continue doing so when emulated as cyberbeings. We made a presentation about Cybertwins at Terasem’s 5th Annual Colloquium on the Law of Futuristic Persons in Second Life (on Terasem Island), on December 10th, 2009.

Fred recently had his brain placed into cryostasis at the Alcor Life Extension Foundation in Scottsdale, to preserve his Connectome as additional Mindfile information. Though I will have to carry on alone for both of us for a short while before we see each other in cyberspace, Fred is still part of all of us in the Terasem Collective Consciousness and we will continue to enjoy his warm creativity again soon as well as through his poetry and many writings.

As they say on the Star Pebble, See you in the next cycle.

With all my love,

Linda Chamberlain

To view online with active links:


]]> 16
ii Mirror mirror hanging on the wall, CryoX: Birth of NeoInsurgent Cryonicst Mon, 12 Mar 2012 23:34:51 +0000 chronopause Continue reading ]]>

By CryoX

{This is a work of fiction  {or is it?}

Mirror mirror hanging on the wall
You don’t have to tell me who’s the biggest fool of all
Mirror mirror I wish you could lie to me
And bring my baby back, bring my baby back to me – m2m

My frequent flier card isn’t a card at all, it’s Parthenocissus tricuspidata (some would argue it’ the Roman numeral IV, instead). Whatever. For me it’s the magic weed that evaporates the financial distance between the coasts three or four time a year. Most of my frat buddies have their business junkets, we academics have our conferences. Alcor and Mike Darwin. Both on the West Coast, as  was my upcoming conference. Doable.

I hadn’t seen Max More since my undergraduate days, which I realized were rapidly becoming, no pun intended, a chillingly long time ago. My girlfriend (at the time) and I had attended some cryo/extro/CR get-together’s, and I met Max and his wife Natasha several times.  Max was this earnest, muscular, ginger, intellectual type who tried just a little too hard, was just a little too rehearsed and was more than a little too rigid. His wife Natasha? In some slightly different AU, Kurzweil has his Ramona. To me there is something artificial, slightly off and s-t-r-e-t-c-h-e-d t-a-u-t about her.  The only time I met Max without her around, I noticed a big difference in him; he was visibly insecure.

Now, Max More is President of Alcor.

I should have called to be sure Max was going to be there instead of just booking for the tour. Stupid. My flight was delayed out of LAX, and with the crazy delay from the limo, I barely made it from Sky Harbor to the Alcor building in time to meet the rest of the group. Unbelievably, the traffic in Phoenix is worse than it is in L.A.

The Alcor building is drab and unimpressive which, because of the idiodyssey of my limo driver, I really don’t understand. There are two Acoma Drives in Scottsdale and the moron (or his company) driving me from the airport had no GPS. We spent half an hour cruising around the Scottsdale Air Park before I finally became desperate enough to shove my Droid in his face and demand he call someone for instructions (shame on me for not having my GPS enabled for travel). The Air Park has lots of architecturally attractive buildings – some quite stylish if you like that Frank Lloyd Desert Look. The Alcor building is Brutalist Bad; plain-ugly-anywhere.

As soon as we were admitted to the lobby/reception area, a bomb went off in my head: Natasha! I don’t know if she had anything to do with it, but that was my reaction.  That kind of space is, by definition, supposed to welcome and draw you in. Instead, there is this big, cold, crystalline blob in the form of an “Infinity Mirror” almost immediately inside the door on the wall to your right, as you walk in.

There are all kinds of problems with this. First, it causes a distraction. The visitors aren’t interacting or socializing with each other, or the Alcor staffer (who should be a scantily clad voluptuous blonde). Instead, they are looking at the “pretty” on the wall, and some of them are even ape-touching it. One Merkeley woman in the group poked me in the ribs and said in an excited whisper, “Oh look into it, look into it.” That was my undoing. Fun-house mirrors, looking down tall glass buildings, certain angles at the Las Vegas  strip: all provoke intense, uncontrollable vertigo and nausea. Instantly, I was an undergrad in a dorm room staring up at an empty case of Dos Equis from the floor.  In one direction was the door to the outside, which the lady who had let us in had locked with a key. In the other direction was a mass of sharp angled stainless steel and glass furniture which I could see myself impaled upon and dying in a pool of my own blood and vomit.  I was paralyzed in front of the magic mirror. All I could do was shut my eyes and think of cool sea breezes. It worked.

The Alcor reception area is done up in grays, icy whites and shiny metals. This is a cryonics company. Its two most obvious and predominant negative images to overcome are death and the cold.  I didn’t really need the rest of the tour because even before the nausea had fully subsided, I realized that the special expertise Max had been hired to ply on Alcor was a new, high technology “preservative” skill called techsodermy, which is the cryonics equivalent for “dead” high technology companies. It was invented in the 1980s in Silicon Valley, and while I just made the analogy to cryonics, it really owes it origins more to taxidermy, because it was invented in order to fill dead tech companies with fluff in the hopes of convincing someone to buy them. (When we were waiting for our rides, the Merkeley Lady said the lobby reminded her of Benihana, and that she expected an “Oriental gentleman” with sizzling liquid nitrogen and  steak and shrimp to come out and start “chopping our meal” with a Ginzu knife at any moment. At least, she hoped it was steak and shrimp.)

My Old Man is all about money. In fact, he is money. He makes money appear and disappear. He moves money. He cleans it, he packages it, he inventories it, he “handles” it. That means that his clients are, mostly, people who rarely, if ever touch the filthy stuff. Some of them don’t even want to touch the little pieces of plastic that serve as markers for it. It’s an irony that the people who have the most money are the most visibly invisible of the super rich. If there is anyone reading this who knows what a Smythsons Diary is, I’d be very surprised. Perhaps a few more would know how to assess a man’s station by looking at his shoes, or his writing utensil? Today, casual dress is so commonplace and so comfortable…and if you want to be somewhere reasonably economically and you have commonsense and a lot of money, you book first class and you dress sensibly and comfortably. But, if you are in the know – then you know who’s who, and you don’t need a ledger book to tell you.

If you want peace and privacy, then you don’t travel by commercial means at all. That’s for the peasants. You use Flight Centres and privates jets, and there is no security screening. And if you want a blow job or a massage, or both en route, that can be arranged for a few hundred dollars more; a small part of the cost of coach ticket the flying public pays, and that after taking off their shoes and belts and switching planes in Houston and Dallas.

The people at Alcor are clueless about how to get the customers that matter. Not just the rich and the super rich (the people my Old Man services day-in and day-out), but the “good-judgment” segment of every demographic of the population. You may be a working class stiff from Boston in a cloth coat, but you know what the genuine trappings of quality, durability and class are, regardless of the style. Warmth, wealth, style, elegance, quality; whether understated or overstated, they always come through. So does Costco warehouse gray.

My Old Man wanted me to get an M.B.A. But he wasn’t altogether disappointed that instead of the usual frequent flier card I got that Mark IV. He’s interested in cryonics and he thinks it has a technical and (less so) a financial chance of working. But Alcor? I may be that desperate, but unfortunately for me (and him), he’s not.

]]> 8
Three Strikes and You’re Out! Sun, 26 Feb 2012 06:03:33 +0000 chronopause Continue reading ]]>

By Mike Darwin

Left: Science Fiction writer Fred Pohl, with friend.

Predicting the future is a tough business. It is an especially tough business when it is proposed  that the prediction be highly specific and technically accurate. Say, akin to predicting the iPhone with Siri in 1965. It’s often been noted that none of the Golden Age of Science Fiction writers like Heinlein, Clarke, or Asimov predicted the PC, let alone the laptop. And most didn’t have a clue about the emerging developments in biology. So, the odds that one of those esteemed gentlemen would have conjured up a hand-held device that you could ask just about any question to (and get a useful answer), pay your bills through, order your meals with, get directions from, do your banking over, get reminders, entertainment or voice mail from and have a conversation with…well, the odds of that were just about nil. Just about, but not, as it turns out, quite nil.

In his 1965 cryonics novel, The Age Of The Pussyfoot, that Golden Age Science fiction writer, co-contemporary and friend of Bob Ettinger, Fred Pohl posited the existence of a device called the Joymaker, which every civilized person would necessarily have to have. The Joymaker incorporated the following features and uses:

  • Access to sophisticated computing for money management, scientific calculations, etc.
  • Access to planetary libraries at any time and any place.
  • The education of children each of whom have their own Joymakers.
  • Health Maintenance: the Joymaker monitors vitals, administers life saving or mood altering medications, summons emergency medical help and summons cryopreservation services in the event of cardiac  arrest.
  • The Joymaker offers voice mail which is the core of interpersonal interaction in the novel.
  • Orders all food and beverages and arranges payment, both in the home and in public.
  • Orders all other goods for delivery and since payment is automatic, the expense of items is not always apparent to the buyers. Thus, the protagonist rapidly depletes his “fortune.”
  • Replaces the public address system allowing any group of people to hear a public announcement on their Joymakers thus eliminating the need for loudspeakers in public places or interruption of entertainment programming.
  • Locating people. The central computer can track the position of any Joymaker, and by extension, its owner. This information can be made available at the owner’s discretion.
  • Jobs not requiring physical presence. One character is a “Reacter,” someone who samples new products and reports her reactions using the Joymaker. The central computer analyzes her reactions in the light of her known psychological makeup and is able to statistically predict how well the product will sell.

Left: Robert C. W. Ettinger, the father of cryonics.

The Age Of The Pussyfoot was set in the year 2527. However, in his Afterword to the novel, Pohl noted that he thought many of the functions of the Joymaker would be realized not in five centuries, but more likely in five decades.  Forty seven years after Pussyfoot, the iPhone with Siri is here, and most of Pohl’s predictions are  indeed a reality.  And, at age 93, Fred Pohl has survived long enough to see his predictions become reality. His friend and fellow science fiction writer Bob Ettinger was cryopreserved late last year and Pohl has been intimately aware of cryonics for ~50 years. He was one of the first people Ettinger contacted about the idea and over the ensuing five decades Ettinger never ceased to nag Pohl to make cryonics arrangements. The two were good friends and stayed in touch in writing – the last letter Ettinger wrote to Pohl shortly before his cryopreservation, admonished him, yet again, to get signed up for cryonics.

I too had tried to persuade Pohl to make cryonics arrangements, even offering him a “free freeze” in 1978. When Ettinger entered cryopreservation on July 23, 2011, Pohl wrote a moving tribute him on his blog “The way of the Future” and this prompted me to take up where Bob necessarily left off in urging Fred to make cryonics arrangements:

Mike Darwin says: Hello, Fred, this is from Mike Darwin, the guy who made you the offer of a “free freeze” after dinner that night in Louisville, KY in our suite in the Galt House hotel. You were the Guest of Honor at the American Science Fiction Convention in 1978, and we took you to dinner and made you an offer that, as it turned out, you easily could refuse! If you want to read an account of that meeting from the perspective of the cryonics people present at that time, it’s up on line, here: and is entitled, “When You Can’t Even Give it Away – Cryonics and Fred Pohl.

When you write about Bob Ettinger, “He wrote me one more letter, good-naturedly urging me to change my mind. That was the end,” I would say in response, “Uh, uh, it is much more likely, on the basis of probability alone, that was the end not for Bob, but for you.

Bob and I talked and corresponded about you a number of times over the years. Unlike you, I was not close to Bob, and we were often at odds. Interestingly, one of the few things that ever resulted in a genuine emotional connection between us was the offer we made to cryopreserve you for free. While he was too reserved and diplomatic to say so, your given reason for turning cryonics down, well, to be frank, I think it pissed him off a little. It was apparent that he genuinely liked and admired you and that, maybe just as importantly, he shared a common past with you. You and he grew up in the Golden Age of Science Fiction and you both shared the common narrative and heritage of what is now being called “The Greatest Generation.” The last time I saw Bob, was over dinner a few years ago in Michigan. He was quite frail, but wickedly lucid. I asked him if you were still compos mente and if he was still in touch with you. He sighed, “Yes,” and a “Yes.” And then he momentarily lost his temper, which is something I almost never saw him do. I don’t remember his exact words, but they were pretty to close to this: “I guess he doesn’t think that much of me or of the rest us, because he’s so worried about being alone and displaced from the people he knows and loves now. Doesn’t he think I’ll be there? Doesn’t he think any of the hundred or so others from our generation will be there? And if he does, and he is so worried about loneliness and social isolation, then dammit why doesn’t he come along to keep us company?”

I thought that was an extraordinarily good question. But logical and emotional arguments aside, it was painfully clear to me that HE WANTED YOU ALONG FOR THE RIDE. I had a hard time holding back the tears, and I had to excuse myself to the men’s room.

When most men die, their probability for any future goes to zero; in effect, their event horizon collapses. That’s about to happen to you (and to me, and to everyone else). Say what you will, Bob Ettinger now confronts two possibilities – oblivion, or one hell of a really interesting future. A future far more fantastic than anything you or he ever dreamed of, or wrote about. If nothing else, just to have come that far and to be in that position, well, it’s a hell of an accomplishment. And I am very grateful to Bob Ettinger for achieving it, because it opens that possibility to me, as well.

So, Fred, here’s the deal. Your friend is waiting for you: he damn sure wanted you to embark on the adventure (good or bad) that he has now begun. In fact, he kept at you to go until, literally, almost his last breath for this life cycle. He can’t do it anymore, so I guess it is my turn, once again, to ask you to reconsider and to join your friend and colleague on his journey into the land you both dreamed of when you were young, and in your salad days. Please, reconsider your arguments. It is now for sure you won’t be without a friend and cohort, and I can pretty much guarantee you that your revival won’t take place unless you have a use.
Finally, I can tell you for a fact that the best use you have is continue living and growing and telling stories. At our core, we humans are ‘store creatures,’ and we will remain so as long we *are* human. It goes without saying that story creatures need storytellers; your job is thus secure.

August 2, 2011, 11:47 pm

To which Fred replied:

Declining Immortality Twice

Mike Darwin’s response to my piece on the loss of that very good man, Bob Ettinger, caught me completely unaware. I am grateful to you for repeating the offer of a free freeze, Mike, just as I am grateful to the people who sometimes tell me that they’re going to pray for me. Even though I can’t accept your offer, it’s a kind thought.

Let me quote from a poem that was written long ago by John Dryden, in an attempt to sum up the teachings on this subject of the even longer ago Roman philosopher Lucretius. The last six lines say it all, but I’ll give you the whole thing. It goes like this:

So, when our mortal forms shall be disjoin’d.
The lifeless lump uncoupled from the mind,
From sense of grief and pain we shall be free,
We shall not feel, because we shall not be.

Though earth in seas, and seas in heaven were lost
We should not move, we should only be toss’d.
Nay, e’en suppose when we have suffer’d fate
The soul should feel in her divided state,
What’s that to us? For we are only we
While souls and bodies in one frame agree.

Nay, though our atoms should revolve by chance,
And matter leap into the former dance,
Though time our life and motion should restore.
And make our bodies what they were before,
What gain to us would all this bustle bring?
The new-made man would be another thing.

But I do appreciate the offer.

This entry was posted on September 9, 2011 at 12:30 am at

Fred Pohl may be the first man in the history of the world to have declined a shot at immortality not once, but twice! I would argue that the really amazing thing about Pussyfoot is not just that Pohl got the technology of the Joymaker right, but that he also got the biotechnology of the future more or less right – granted in no small measure due to that “good man” and good friend of his, Bob Ettinger.  Fred Pohl knew a sound and reasonable idea when he saw one , biological or otherwise,  and 50 years later cryonics has endured and the biological basis for it has grown steadily better. Lucky patients cryopreserved with little or no ischemia, using the best available vitrification techniques today, will have intact connectomes and minimal neuronal molecular damage. Such fortunate patients will suffer virtually no freezing damage.

Above: The Connectome.

 Any yet, Pohl is having none of it.

Right: Viktor Frankel.

I used to find this a mystery. To be surprised by it. To marvel at it. However, that time has long past. The first insight that offered a partial answer to that mystery came from Viktor Frankel’s book, Man’s Search for Meaning.  Frankel noted that there were two basic types of people in the concentration camps – those who drew their sense of identity and purpose from their social/societal position; husband, father, lawyer, doctor, mother, grandmother… and those who drew it from some other source, independent of their social context, or how they were labeled. For some, the origin of that sense of identity was religious, for others, it existed independent of any institutional or religious thoughts or beliefs. Those few people saw themselves as unique and worthwhile individuals deserving of and entitled to life and survival at all costs, independent of any external factors or forces.

Much later I realized that another component in the will to survive that is often material in making the choice for cryonics is the yearning to be transcendent. It is not enough to be able to see the future with accuracy and precision, it is necessary to yearn to be it. To quote Nietzsche:

 ”I teach you the overman. Man is something that shall be overcome. What have you done to overcome him? … All beings so far have created something beyond themselves; and do you want to be the ebb of this great flood, and even go back to the beasts rather than overcome man? What is ape to man? A laughing stock or painful embarrassment. And man shall be that to overman: a laughingstock or painful embarrassment. You have made your way from worm to man, and much in you is still worm. Once you were apes, and even now, too, man is more ape than any ape…. The overman is the meaning of the earth. Let your will say: the overman shall be the meaning of the earth…. Man is a rope, tied between beast and overman—a rope over an abyss … what is great in man is that he is a bridge and not an end.”

H. G. Wells said it far more beautifully:

“We look back through countless millions of years and see the great will to live struggling out of the intertidal slime, struggling from shape to shape and from power to power, crawling and then walking confidently upon the land, struggling generation after generation to master the air, creeping down the darkness of the deep; we see it turn upon itself in rage and hunger and reshape itself anew, we watch it draw nearer and more akin to us, expanding, elaborating itself, pursuing its relentless inconceivable purpose, until at last it reaches us and its being beats through our brains and arteries…It is possible to believe that all the past is but the beginning of a beginning, and that all that is and has been is but the twilight of the dawn. It is possible to believe that all that the human mind has accomplished is but the dream before the awakening; out of our lineage, minds will spring that will reach back to us in our littleness to know us better than we know ourselves. A day will come, one day in the unending succession of days, when beings, beings who are now latent in our thoughts and hidden in our loins, shall stand upon this earth as one stands upon a footstool, and shall laugh and reach out their hands amidst the stars.”

But Wells spoke of not of achieving that greatness personally, but rather of the species achieving it  – of our descendants achieving it.

To want it, to need it, to ache for it personally – that is a rare thing. It is the motive force that has driven biological evolution – and it is the motive force that has driven every human innovation and every human conquest – for good or evil.

Recently, a friend of mine asked, in wonder, why I was preparing for the contingency that technological civilization might collapse. “There would be no cryonics if that happened.” he noted, correctly.

“Yes, I know.” I replied.

“And it would be really horrible. A terrible, terrible undoing of the world.” he added.

“Yes, yes it would.” I agreed.

“Then why on earth would you want to be around to see that?”

“I can’t imagine missing the last act! I mean, honestly, I’ve had the chance to read up on all that happened before, I’ve trotted all over the planet, read the thoughts of the best minds of every known culture and civilization, and you propose I should wimp out and miss the denouement? I’m plenty savvy enough to keep redundant assets for a quick and painless exit at should I find myself in unbearable agony and no hope of survival. However, absent that, I can’t even conceive of betraying the intense curiosity I’d have about any apocalypse, even if my own survival were impossible.”

Frankel comes close to summing up my feelings on this matter when he says:  ”Man is that being who invented the gas chambers of Auschwitz; however, he is also that being who entered those gas chambers upright, with the Lord’s Prayer or the Shema Yisrael on his lips.” There is an implied qualification not present in Frankel’s quote:  “Man at his best is that…” The cryonicist is thus that being who chooses life, inquiry, knowledge and understanding of the universe as his personal and moral imperatives. He chooses to feel and to be these things – not just to think about them, or talk about them. He chooses action over contemplation, life over death.

The origins of that choice? Well, that is still a mystery, but one which, in the fullness of time, may we may hope to unravel.

]]> 27
THE EFFECTS OF CRYOPRESERVATION ON THE CAT, Part 2 Wed, 15 Feb 2012 05:53:06 +0000 chronopause Continue reading ]]> IV. EFFECTS OF CRYOPRESERVATION ON THE HISTOLOGY OF SELECTED TISSUES (Liver and Kidneys)

Histology was evaluated in two animals each from the FIG and FIGP groups, and in one control animal.  Only brain histology was evaluated in the straight-frozen control animal.


      The histological appearance of the liver in all three groups  of animals was  one  of  profound injury.  Even in the FGP group, the cellular integrity of the liver appeared grossly disrupted.  In liver tissue prepared using Yajima stain, the sinusoids and spaces of Disse were filled with flocculent debris, and it was often  difficult or impossible to  discern cell membranes (Figures 30-32). The collagenous  supporting structures of the bile canaliculi were in evidence and the nuclei of the hepatocytes appeared to have survived with few alterations evident at the light level, although frequent pyknotic nuclei were noted in the FIGP group (Figures 31 & 34).  Indeed, the nuclei often appeared to be floating in a sea of amorphous material (Figure 34).  Not surprisingly, the density of  staining of the cytoplasmic material was noticeably reduced over that  of  the fixative-perfused control. Few intact capillaries were noted.

FGP  liver  tissue prepared with PAS stain  exhibited  a  similar degree  of disruption (Figure 32).  However, quite remarkably, the borders of  the hepatocytes  were defined by a clear margin between  glycogen granule containing cytoplasm  and non-glycogen containing membrane or other material (membrane debris?) which failed to stain with Yajima due to gross physical disruption, or altered tissue chemistry (Figure 35).

Figure 27: The fundamental histological structural unit of the liver is the liver lobule, a six-sided prism of tissue ~ 2 mm long and ~1 mm in diameter.  The lobule is defined by interlobular connective tissue which is not very visible under light microscopy in the cat (or in man).  In the corners of the lobular prisms are the portal triads.  In tissue cross sections prepared for microscopy, the lobule is filled by cords of hepatic parenchymal cells, the hepatocytes, which radiate from the central vein and are separated by vascular sinusoids. The bulk of the liver consists of epithelial hepatocytes arranged into cords, separated by the vascular sinusoids through which the portal blood percolates. The epithelium of the sinusoids is decorated with phagocytic Kuppfer cells that are the primary mechanism for removing gut bacteria present in the venous splanchnic circulation.

The cords of hepatocytes comprise the hepatic parenchyma. In section, the hepatic cords appear as linear ropes (or cords) of hepatocytes. Viewed 3-dimensionaly, the cords consist of intricately folded branching and connected planes of cells which extend parallel to the long axis of the lobule and radiate out from the its center. The hepatocytes in each cord are attached to each other wherever they come into contact, as well as to the sinusoids at either end of the lobular pyramid. The sinusoids are vascular spaces lined by fenestrated endothelium that has  no basement membrane, thus allowing the plasma to pass over the large surface area sheets of hepatocytes for detoxification. The sinusoid endothelium stands off from the underlying hepatocytes allowing space for the plasma to interact with the hepatocytes and Kupffer cells (the space of Disse).

 Bile canaliculi, formed by apical surfaces of adjacent hepatocytes, form a network of tiny passages contained within each hepatic cord.

Figure 28: Control-1 Liver, Yajima, 100x. Liver sections from the Control animal demonstrated normal morphology as can be seen in the image above.

Figure 29: Control-1 Liver, PAS, 100x. Liver sections were prepared with both Yajima and PAS stain in order to allow visualization of structures that neither stain discloses alone; in this case, most importantly, the presence or glycogen granules in the hepatocytes of the Control animal. Note the presence of normal intralobular architecture with crisp cell membranes in evidence, normal appearing sinusoid spaces, and residual sinusoidal red blood cells (RBCs) not washed out during fixative perfusion.

Figure 30: FGP-1 Liver, Yajima, 100x. The livers of FGP animals demonstrated extensive histological disruption. The sinusoids were all but obliterated and appeared filled with debris (ds) and the cytoplasm was extensively vacuolated (v). 

Figure 31: FIG-2 Liver, Yajima, 100x. As was the case with the FGP animals, the sinusoids were barely discernable and appeared filled with cellular debris (cd). In addition to extensive cytoplasmic (cv) and nuclear vacuolization (nv), pyknotic nuclei (pn) were also present. Cell membranes were difficult to discern and in many areas, frank cell lysis appears to have occurred with flocculent cellular debris (cd) appearing to fill the sinusoids.

Figure 32: FGP-1, Liver, PAS, 100x. The intensely red-stained granules present in the cytoplasm of the hepatocytes are glycogen deposits selectively stained by PAS. There is extensive cytoplasmic (cv) and nuclear vacuolization (nv) and the sinusoids appear filled with flocculent cellular debris (d). Indeed, it is only possible to discern the outlines of the original individual hepatocytes from the pattern of the intracellular glycogen granules disclosed by the PAS stain.

Figure 33: FIG-2, Liver, Yajima, 100x, well preserved area. While the bulk of the hepatic parenchyma exhibited the severe injury seen in Figures 30-32, there were frequently observed islands of comparatively well preserved tissue visible in both the FGP and FIGP sections suggesting that freezing injury is occurring non-homogenously.

Figure 34: FIG-2, Liver, PAS, 100x, necrotic area. There were patchy areas of frank necrosis visible in the livers of the FIGP animals that were not present in the livers of the FGP animals. This area, adjacent to  a central vein, shows extensive cell lysis with heavy vacuolization of the cytoplasm (v) and many pyknotic nuclei (pn) in evidence.


Figure 35: FIG-2, Liver, PAS, 100x. Note the presence of a few scattered glycogen granules (GG). Interestingly, in this comparatively well preserved area of FIGP liver it is possible to see some remaining deposits of glycogen that were not consumed during the long post-arrest ischemic interval. The absence of pyknotic nuclei and the relative absence of large intracellular vacuoles is also remarkable.


Figure 36: The functional unit of the kidney is the nephron, consisting of the glomerulus and the uriniferous tubule ( the renal corpuscle: a).The capillary tuft of the nephron, the glomerulus, is enclosed within a double cell layered structure; Bowman’s capsule. Bowman’s capsule and the capillary tuft it encloses comprise the glomerulus. Bowman’s capsule and the glomerular capillary tuft constitute the renal (or Malpighian) corpuscle (b).

 Bowman’s capsule opens into the proximal convoluted tubule which leads to the loop of Henle. The loop of Henle leads to the distal convoluted tubule which then leads to the collecting duct.

 The inner layer of Bowman’s capsule is the visceral layer. It consists of cells called podocytes. The outer layer of Bowman’s capsule is the parietal layer. The pedicels are the foot processes on the podocytes.

 The juxtaglomerular cells secrete renin which is ultimately metabolized into angiotensin II, a potent vasoconstrictor critical to maintaining normotension. The macula densa are specialized cells in the distal convoluted tubule that are responsible for sodium, and thus fluid regulation. The juxtaglomerular cells and macula densa make up the juxtaglomerular apparatus.   

PAS  stain  was used to prepare the control, FGP and  FIGP  renal tissue for light microscopy.  The histological appearance of FGP renal tissue was surprisingly good (Figures 329, 40 & 41).  The glomeruli and tubules  appeared grossly intact  and stain uptake was normal.  However,  a  number  of alterations  from  the appearance of the control were  apparent.  The capillary tuft of the glomeruli appeared swollen and the normal  space between the capillary tuft and Bowman’s capsule was absent.  There was also marked interstitial edema, and marked cellular edema as evidenced by the obliteration of the tubule lumen by cellular edema.

By contrast, the renal cortex of the FIGP animals, when  compared to  either  the control or the FGP group, showed a  profound  loss  of detail, absent intercellular space, and altered staining (Figures 40 & 42). The  tissue appeared frankly necrotic, with numerous pyknotic nuclei and  numerous large  vacuoles  which peppered the cells.  One  striking  difference between FGP and FIGP renal cortex was that the capillaries, which were largely  obliterated in the FGP animals, were consistently  spared  in the FIGP animals. Indeed, the only extracellular space in evidence in this  preparation was the narrowed lumen of the  capillaries,  grossly reduced in size apparently as a consequence of cellular edema.

Both ischemic and non-ischemic sections showed occasional evidence of  fracturing, with fractures crossing and severing tubule cells  and glomeruli (Figure 41).

Figure 37: Control, Renal Cortex, PAS 40x. Three glumeruli are present (G) adjacent to crisp, well defined proximal (P) and distal (D) convoluted tubules. The intertubular capillaries (C) show normal diameter with lumens free of red cells or debris. There is normal capsular space between Bowman’s capsule (BC, yellow arrows) and the glomerular capillary tuft and vascular pole (VP) are also normal in appearance.


Figure 38: Control-1, PAS 40x. Collecting ducts (CD), distal tubules (D) and a glomerulus  (G) are present in 6this micrograph of renal apical column. At right, a glomerulus is present with normal Bowman’s space (BS) and the macula densa (MD) in evidence.

Figure 39: FGP-1, Renal Cortex, PAS, 40x. The intertubular space (ITS) is great expanded and the tubule cells are heavily vacoulated (V) and lack definition. The intratubular space (IS) is no longer in evidence and the architecture of the glomerluar capillary tuft (GT) is radically altered and there is an absence of the normal architecture of Bowman’s space (yellow arrows). The intertubular capillaries appear to have been reduced to debris (D) visible in the intertubular spaces.

 Figure 40: FIG-2 Renal Cortex, PAS, 40x. There is massive cellular edema present with almost complete obliteration of Bowman’s space. The tubule (T) lumens are no longer visible and the tubule cells are extensively vacoulated with many pyknotic nuceli in evidence. Individual tubular cell membranes are impossible to resolve. The afferent glomerular arteriole (AA) appears intact (red arrow).

Figure 41: FIG-2 Renal Cortex, fracture present (arrows), PAS, 40x. Two renal tubules, possibly a proximal and distal convoluted tubule (T) are dissected by a fracture as is the macula densa (MD) of the glomerulus (G). Remarkably, there is still a small amount of intertubular space present in this micrograph.


Figure 42: FIG-2 Renal Cortex, PAS 40x. vacuolization (black arrows) and extensive vacuolization (blue arrows) accompanied by necrotic changes, such as the frequent presence of pyknotic nuclei (red arrows).


]]> 5
THE EFFECTS OF CRYOPRESERVATION ON THE CAT, Part 1 Mon, 13 Feb 2012 22:46:34 +0000 chronopause Continue reading ]]> by Michael Darwin, Jerry Leaf, Hugh L. Hixon

I.    Introduction                                  

II.   Materials and Methods

III   Effects of Glycerolization

IV.  Gross Effects of Cooling to and Rewarming From -196°C


The  immediate  goal  of human cryopreservation  is  to  use  current cryobiological  techniques  to  preserve the  brain  structures  which encode personal identity adequately enough to allow for  resuscitation or reconstruction of the individual should molecular nanotechnology be realized (1,2).  Aside from two previous isolated efforts (3,4)  there has  been  virtually no systematic effort to examine the  fidelity  of histological,  ultrastructural, or even gross structural  preservation of  the brain following cryopreservation in either an animal or  human model.    While  there  is  a  substantial  amount  of  indirect   and fragmentary  evidence  in the  cryobiological  literature  documenting varying  degrees  of  structural  preservation  in  a  wide  range  of mammalian tissues (5,6,7), there is little data of direct relevance to cryonics.   In particular, the focus of contemporary  cryobiology  has been   on   developing  cryopreservation  techniques   for   currently transplantable  organs,  and this has necessarily  excluded  extensive cryobiological  investigation  of  the brain, the  organ  of  critical importance to human identity and mentation.

The  principal  objective of this pilot study was to  survey  the effects of glycerolization, freezing to liquid nitrogen  temperature, and  rewarming  on  the physiology, gross  structure,  histology,  and ultrastructure of both the ischemic and non-ischemic adult cats  using a preparation protocol similar to the one then in use on human cryopreservation patients.  The non-ischemic group was given the designation Feline Glycerol Perfusion (FGP) and the ischemic group was referred to as Feline Ischemic Glycerol Perfusion (FIGP).

The work described in this paper was carried out over a  19-month period from January, 1982 through July, 1983.  The perfusate  employed in this study was one which was being used in human cryopreservation operations at that time, the composition of which is given in Table I.

The principal cryoprotectant was glycerol.


Pre-perfusion Procedures

Nine adult cats weighing between 3.4 and 6.0 kg were used in this study.  The animals were divided evenly into a non-ischemic and a  24-hour mixed warm/cold ischemic group.  All animals received humane care in  compliance  with  the  “Principles  of  Laboratory  Animal   Care” formulated by the National Society for Medical Research and the “Guide for  the Care and Use of Laboratory Animals” prepared by the  National Institutes  of  Health  (NIH Publication  No.  80-23,  revised  1978).  Anesthesia   in  both  groups  was  secured  by  the   intraperitoneal administration of 40 mg/kg of sodium pentobarbital.  The animals  were then  intubated and placed on a pressure-cycled ventilator.   The  EKG was monitored throughout the procedure until cardiac arrest  occurred. Rectal and esophageal temperatures were continuously monitored  during perfusion using YSI type 401 thermistor probes.

Following placement of temperature probes, an IV was  established in  the medial foreleg vein and a drip of Lactated Ringer’s was  begun to  maintain  the  patency of the IV and  support  circulating  volume during  surgery. Premedication (prior to perfusion) consisted of  the IV  administration of 1 mg/kg of metubine iodide to inhibit  shivering during  external  and  extracorporeal cooling  and  420  IU/kg  sodium heparin  as  an anticoagulant.  Two 0.77 mm I.D.  Argyle  Medicut  15″ Sentinel line catheters with Pharmaseal K-69 stopcocks attached to the luer fittings of the catheters were placed in the right femoral artery and vein.  The catheters were connected to Gould Model P23Db  pressure transducers   and  arterial  and  venous  pressures   were   monitored throughout the course of perfusion.

Surgical Protocol

Following placement of the monitoring catheters, the animals were transferred  to a tub of crushed ice and positioned for surgery.   The chest  was shaved and a median sternotomy was performed.   The  aortic root was cleared of fat and a purse-string suture was placed,  through which  a  14-gauge  Angiocath was introduced.   The  Angiocath,  which served  as  the  arterial  perfusion cannula,  was  snared  in  place, connected  to  the  extracorporeal circuit and cleared  of  air.   The pericardium  was  opened  and tented to expose the  right  atrium.   A purse-string  suture was placed in the apex of the right atrium and  a USCI  type  1967 16 fr. venous cannula was introduced  and  snared  in place.  Back-ties were used on both the arterial and venous cannulae to secure  them and prevent accidental dislodgment during the  course  of perfusion.  Placement of cannulae is shown in Figure 1.

Figure 1: Vascular access for extracorporeal perfusion was via median sternotomy. The arterial cannula consisted of a 14-gauge  Angiocath (AC) which was placed in the aortic root (AR) and secured in place with a purse string suture. A USCI  type  1967 16 fr. venous cannula (VC) was placed in the right atrium (RA) and snared in place using 0-silk ligature and a length of Red Robinson urinary catheter (snare). The chest wound was kept open using a Weitlander retractor. The left ventricle (LV) was not vented.

  Extracorporeal Circuit

Figure 2: Cryoprotective perfusion apparatus: RR = recirculating reservoir, PMC = arterial pressure monitor and controller, MBD = micro-bubble detector, US = ultrasonic sensor, ADC = arterial drip chamber, D/0 = dialyzer/oxygenator, RP = cryoprotective ramp pump, HEX = arterial heat exchanger, 40 MFH = 40 micron filter holder, PT = arterial pressure transducer, CR = glycerol concentrate reservoir, EKG = electrocardiograph, TT = thermistor thermometer, TS = thermistor switch box, IB = ice bath, EC = electrocautery, APD = arterial pressure display.

The extracorporeal circuit (Figures 2&3) was of composed of 1/4″ and 3/8″  medical grade polyvinyl chloride tubing.  The circuit  consisted of  two  sections:  a  recirculating loop  to  which  the  animal  was connected  and a glycerol addition system.  The  recirculating  system consisted  of  a  10 liter polyethylene reservoir  positioned  atop  a magnetic  stirrer, an arterial (recirculating) roller pump,  an  Erika HPF-200  hemodialyzer which was used as a hollow fiber oxygenator  (8) (or alternatively, a Sci-Med Kolobow membrane oxygenator), a  Travenol Miniprime  pediatric  heat  exchanger, and a 40-micron  Pall  LP  1440 pediatric blood filter.  The recirculating reservoir was  continuously stirred with a 2″ Teflon-coated magnetic stir bar driven by a  Corning PC  353 magnetic stirrer.  Temperature was continuously  monitored  in the  arterial line approximately 15.2 cm from the arterial  cannula using a Sarns in-line thermistor temperature probe and YSI 42SL remote sensing  thermometer.  Glycerol concentrate was continuously added  to the recirculating system using a Drake-Willock dual raceway hemodialysis pump, while venous perfusate was concurrently withdrawn from the circuit and discarded using a second raceway in the same pump head.

Figure 3: Schematic of cryoprotective perfusion circuit.

Storage and Reuse of the Extracorporeal Circuit

After  use the circuit was flushed extensively with filtered  tap and distilled water, and then flushed and filled with 3%  formaldehyde in distilled water to prevent bacterial overgrowth.  Prior to use  the circuit was again thoroughly flushed with filtered tap water, and then with  filtered distilled water (including both blood and gas sides  of the hollow fiber dialyzer; Kolobow oxygenators were not re-used).   At the  end  of  the distilled water flush, a test for  the  presence  of residual formaldehyde was performed using Schiff’s Reagent.  Prior  to loading  of  the perfusate, the circuit was rinsed with 10  liters  of clinical  grade normal saline to remove any particulates  and  prevent osmotic dilution of the base perfusate.

Pall filters and arterial cannula were not re-used.  The  circuit was replaced after a maximum of three uses.

Preparation of Control Animals

Fixative Perfusion

Two control animals were prepared as per the above.  However, the animals  were subjected to fixation after induction of anesthesia  and placement  of cannulae.  Fixation was achieved by first perfusing  the animals   with  500  mL  of  bicarbonate-buffered  Lactated   Ringer’s containing 50 g/l hydroxyethyl starch (HES) with an average  molecular weight  of  400,000 to 500,000 supplied by  McGaw  Pharmaceuticals  of Irvine, Ca (pH adjusted to 7.4) to displace blood and facilitate  good distribution of fixative, followed immediately by perfusion of 1 liter of  modified  Karnovsky’s  fixative (Composition given  in  Table  I).  Buffered Ringers-HES perfusate and Karnovsky’s solution were  filtered through 0.2 micron filters and delivered with the same  extracorporeal circuit described above.

Immediately   following  fixative  perfusion  the  animals   were dissected and 4-5 mm thick coronal sections of organs were cut, placed in  glass screw-cap bottles, and transported, as detailed  below,  for light or electron microscopy.

Straight Frozen Non-ischemic Control

One animal was subjected to straight freezing (i.e., not  treated with   cryoprotectant).    Following  induction  of   anesthesia   and intubation  the  animal  was supported on  a  ventilator  while  being externally  cooled  in  a  crushed  ice-water  bath.   When  the   EKG documented  profound bradycardia at 26°C, the animal was  disconnected from  the  ventilator,  placed  in a  plastic  bag,  submerged  in  an isopropanol  cooling bath at -10°C, and chilled to dry ice and  liquid nitrogen  temperature  per the same protocol used for  the  other  two experimental groups as described below.

Preparation of FGP Animals

Following  placement of cannulae, FGP animals were  subjected  to total  body  washout  (TBW) by open-circuit perfusion  of  500  mL  of glycerol-free  perfusate.  The extracorporeal circuit was then  closed and constant-rate addition of glycerol-containing perfusate was begun.

Cryoprotective  perfusion continued until the target concentration  of glycerol  was reached or the supply of glycerol-concentrate  perfusate was exhausted.

Preparation of FIGP Animals

In   the  FIGP  animals,  ventilator  support  was   discontinued following anesthesia and administration of Metubine.  The endotracheal tube was clamped and the ischemic episode was considered to have begun when cardiac arrest was documented by absent EKG.

After the start of the ischemic episode the animals were  allowed to  remain on the operating table at room temperature ( 22°C to  25°C) for  a  30  minute period to simulate  the  typical  interval  between pronouncement  of legal death in a clinical environment and the  start  of  external cooling at that time.  During the 30 minute  normothermic ischemic  interval the femoral cut-down was performed  and  monitoring lines were placed in the right femoral artery and vein as per the  FGP animals.  Prior to placement, the monitoring catheters were  irrigated with normal saline, and following placement the catheters were  filled with 1000 unit/mL of sodium heparin to guard against clot  obstruction of the catheter during the post-arrest ischemic period.

Figure 4: Typical cooling curve of FIGP animals to ~1°C following cardiac arrest.

After the 30 minute normothermic ischemic period the animals were placed  in  a  1-mil polyethylene bag,  transferred  to  an  insulated container  in  which  a bed of crushed ice had  been  laid  down,  and covered  over with ice.  A typical cooling curve for a FIGP animal  is presented in Figure 4. FIGP animals were stored on ice in this fashion for a period of 24 hours, after which time they were removed from  the container and prepared for perfusion using the surgical and  perfusion protocol described above.



 Perfusate Composition

Component                                           mM

Potassium Chloride                                  2.8

Dibasic Potassium Phosphate                 5.9

Sodium Bicarbonate                               10.0

Sodium Glycerophosphate                   27.0

Magnesium Chloride                               4.3

Dextrose                                                   11.0

Mannitol                                                118.0

Hydroxyethyl Starch                         50 g/l

The  perfusate  was an intracellular formulation  which  employed sodium  glycerophosphate  as the impermeant species  and  hydroxyethyl starch  (HES)(av.  MW   400,000  -  500,000)  as  the  colloid.    The composition of the base perfusate is given in Table I.  The pH of  the perfusate  was adjusted to 7.6 with potassium hydroxide.  A  pH  above 7.7, which would have been “appropriate” to the degree of  hypothermia experienced  during cryoprotective perfusion (9), was  not  achievable with  this mixture owing to problems with complexing of magnesium  and calcium   with  the  phosphate  buffer,  resulting  in  an   insoluble precipitate.

Perfusate components were reagent or USP grade and were dissolved in USP grade water for injection.  Perfusate was pre-filtered through a Whatman GFB glass filter (a necessary step to remove precipitate)  and then passed through a Pall 0.2 micron filter prior to loading into the extracorporeal circuit.


Perfusion  of both groups of animals was begun by carrying out  a total body washout (TBW) with the base perfusate in the absence of any cryoprotective agent.  In the FGP group washout was achieved within  2 –  3 minutes of the start of open circuit asanguineous perfusion at  a flow rate of 160 to 200 mL/min and an average perfusion pressure of 40 mm Hg.   TBW  in  the  FGP  group  was  considered  complete  when  the hematocrit  was  unreadable and the venous effluent was  clear.   This typically was achieved after perfusion of 500 mL of perfusate.

Complete blood washout in the FIGP group was virtually impossible to  achieve (see “Results” below).  A decision was made prior  to  the start  of  this  study (based on  previous  clinical  experience  with ischemic human cryopreservation patients) not to allow the  arterial pressure  to  exceed  60  mm Hg for any  significant  period  of  time.  Consequently, peak flow rates obtained during both total body  washout and subsequent glycerol perfusion in the FIGP group were in the  range of 50-60 mL/min at a mean arterial pressure of 50 mm Hg.

Due to the presence of massive intravascular clotting in the FIGP animals  it  was necessary to delay placement of the  atrial  (venous) cannula (lest the drainage holes become plugged with clots) until  the large  clots present in the right heart and the superior and  inferior vena  cava  had been expressed through the atriotomy.  The  chest  was kept  relatively  clear of fluid/clots by active suction  during  this interval.   Removal  of  large clots and reasonable  clearing  of  the effluent  was usually achieved in the FIGP group after 15  minutes  of open  circuit asanguineous perfusion, following which the circuit  was closed and the introduction of glycerol was begun.

Figure 5: pH of non-ischemic Δ•▪*(FGP) and ischemic ●●●  (FIGP) cats during cryoprotective perfusion. The FIGP animals were, as expected, profoundly acidotic with the initial arterial pH being between 6.5 and 6.6.

The  arterial pO2 of animals in both the FGP and FIGP groups  was kept  between  600  mm Hg and 760 mm Hg throughout  TBW  and  subsequent glycerol  perfusion.  Arterial pH in the FGP animals was  between  7.1 and  7.7  and was largely a function of the degree of  diligence  with which  addition of buffer was pursued.  Arterial pH in the FIGP  group was 6.5 to 7.3.  Two of the FIGP animals were not subjected to  active buffering during perfusion and as a consequence recovery of pH to more normal  values  from the acidosis of ischemia (starting  pH  for  FIGP animals was typically 6.5 to 6.6) was not as pronounced (Figure 5).

Figure 6: Calculated versus actual increase in arterial and venous glycerol concentration in the FGP animals. Arrow indicates actual time of termination of perfusion.

Introduction  of glycerol was by constant rate addition  of  base perfusate  formulation  made up with 6M glycerol  to  a  recirculating reservoir  containing 3 liters of glycerol-free base  perfusate.   The target  terminal tissue glycerol concentration was 3M and  the  target time  course for introduction was 2 hours.  The volume of 6M  glycerol concentrate  required  to  reach  a  terminal  concentration  in   the recirculating   system  (and  thus  presumably  in  the  animal)   was calculated as follows:


Mc = ——— Mp

Vc + Vp


Mc = Molarity of glycerol in animal and circuit.

Mp = Molarity of glycerol concentrate.

Vc = Volume of circuit and exchangeable volume of animal.*

Vp = Volume of perfusate added.

* Assumes an exchangeable water volume of 60% of the pre-perfusion  weight of the animal.

Glycerolization  of  the FGP animals was carried out at  10°C  to 12°C.   Initial  perfusion  of FIGP animals was at  4°C  to  5°C  with warming  (facilitated  by  TBW with warmer perfusate  and  removal  of surface  ice packs) to 10°-12°C for cryoprotectant introduction.   The lower  TBW  temperature of the FIGP animals was a consequence  of  the animals  having  been refrigerated on ice for the 24  hours  preceding perfusion.

Following  termination  of the cryoprotective ramp,  the  animals were  removed  from bypass, the aortic cannula was left  in  place  to facilitate  prompt reperfusion upon rewarming, and the venous  cannula was removed and the right atrium closed.  The chest wound was  loosely closed using surgical staples.

Concurrent with closure of the chest wound, a burr hole craniotomy 3  to  5  mm in diameter was made in the right parietal  bone  of  all animals  using a high speed Dremel “hobby” drill.  The purpose of  the burr hole  was  to  allow for  post-perfusion  evaluation  of  cerebralvolume, assess the degree of blood washout in the ischemic animals and facilitate  rapid expansion of the burr hole on re-warming to allow  for the visual evaluation of post-thaw reperfusion (using dye).

The  rectal  thermistor probe used to  monitor  core  temperature during  perfusion was replaced by a copper/constantan thermocouple  at the  conclusion  of perfusion for monitoring of the  core  temperature during cooling to -79°C and -196°C.

Cooling to -79°C

Figure 7: Representative cooling curve (esophageal and rectal temperatures) of FGP and FIGP animals from ~ 10°C to ~ -79°C. The ragged curve with sharp temperature excursions and rebounds is an artifact of the manual control of temperature descent via the addition of chunks of dry ice.

Cooling  to -79°C was carried out by placing the  animals  within two 1 mil polyethylene bags and submerging them in an isopropanol bath which  had  been  pre-cooled to -10°C.   Bath  temperature  was  slowly reduced  to  -79°C  by the periodic addition of dry  ice.   A  typical cooling curve obtained in this fashion is shown in Figure 7.   Cooling was at a rate of approximately 4°C per hour.

Cooling to and Storage at -196°C

Figure 8: Animals were cooled to -196°C by immersion in liquid nitrogen (LN2) vapor in a Linde LR-40 cryogenic dewar. When a core temperature of ~-180 to -185°C was reached, the animals were immersed in LN2.

Following cooling to -79°C, the plastic bags used to protect  the animals  from  alcohol were removed, the animals  were  placed  inside nylon  bags with draw-string closures and were then positioned atop  a 6″ high aluminum platform in an MVE TA-60 cryogenic dewar to which 2″-3″ of liquid nitrogen had been added.  Over a period of  approximately 15  hours  the liquid nitrogen level was gradually  raised  until  the animal  was  submerged.  A typical cooling curve  to  liquid  nitrogen temperature  for animals in this study is shown in Figure 8.   Cooling rates to liquid nitrogen temperature were approximately 0.178°C per  hour.  After  cool-down  animals  were maintained in liquid  nitrogen  for  a period  of  6-8  months until being removed  and  re-warmed  for  gross structural, histological, and ultrastructural evaluation.


Figure 9: Rewarming of all animals was accomplished by removing the animals from LN2 and placing them in a pre-cooled box insulated with 15.2 cm of polyurethane (isocyothianate) foam to which 1.5 L of LN2 (~2 cm on the bottom of the box)  of LN2 had been added. When the core temperature of the animals reached -20°C the animals were transferred to a mechanical refrigerator at 3.4°C.

The  animals  in  both groups were re-warmed to -2°C  to  -3°C  by removing them from liquid nitrogen and placing them in a pre-cooled box insulated on all sides with a 10.2 cm thickness of Styrofoam and containing a small quantity of liquid nitrogen.  The animals were then allowed to re-warm to approximately -20°C, at which time they were transferred  to a  mechanical  refrigerator at a temperature of 8°C.   When  the  core temperature  of the animals had reached -2°C to -3°C the animals  were removed to a bed of crushed ice for dissection, examination and tissue collection  for  light and electron microscopy.  A  typical  re-warming curve is presented in Figure 9.

Modification of Protocol Due To Tissue Fracturing

After the completion of the first phase of this study  (perfusion and  cooling  to  liquid nitrogen temperature)  the  authors  had  the opportunity  to evaluate the gross and histological condition  of  the remains  of three human cryopreservation patients who  were  removed from  cryogenic  storage  and  converted  to  neuropreservation  (thus allowing  for post-arrest dissection of the body, excluding the  head) (10).  The results of this study confirmed previous, preliminary, data indicative of gross fracturing of organs and tissues in animals cooled to  and  re-warmed from -196°C.  These findings led us to  abandon  our plans  to  reperfuse  the  animals  in  this  study  with  oxygenated, substrate-containing  perfusate  (to have been  followed  by  fixative perfusion  for histological and ultrastructural evaluation) which  was to be have been undertaken in an attempt to assess post-thaw viability by  evaluation  of post-thaw oxygen consumption, glucose  uptake,  and tissue-specific enzyme release.

Re-warming  and  examination  of the first  animal  in  the  study confirmed  the presence of gross fractures in all organ systems.   The scope  and severity of these fractures resulted in disruption  of  the circulatory system, thus precluding any attempt at reperfusion as  was originally planned.

Preparation of Tissue Samples For Microscopy



 Composition Of Modified Karnovsky’s Solution

Component                             g/l

Paraformaldehyde                 40

Glutaraldehyde                      20

Sodium Chloride                      0.2

Sodium Phosphate                   1.42

Calcium Chloride                    2.0 mM

pH adjusted to 7.4 with sodium hydroxide.

Samples of four organs were collected for subsequent histological and  ultrastructural  examination:  brain, heart,  liver  and  kidney.  Dissection  to  obtain  the tissue samples was begun as  soon  as  the animals  were  transferred to crushed ice.  The brain  was  the  first  organ  removed  for sampling.  The burr hole created at  the  start  of perfusion  was  rapidly extended to a full craniotomy  using  rongeurs (Figure  14).   The  brain was then removed en bloc to  a  shallow  pan containing  iced,  modified Karnovsky’s fixative  containing  25%  w/v glycerol  (see  Table  II  for composition)  sufficient  to  cover  it.  Slicing of the brain into 5 mm thick sections was carried out with the brain  submerged  in fixative in this manner.  At  the  conclusion  of slicing  a 1 mm section of tissue was excised from the  visual  cortex and  fixed  in a separate container for electron  microscopy.   During final  sample  preparation for electron microscopy care was  taken  to avoid  the  cut  edges  of the tissue block  in  preparing  the  Epon embedded sections.

Figure 10: The sagitally sectioned (5 mm thickness) brains of the animals were placed in a  perforated basket immersed in Karnofsky’s fixative. This assembly was placed atop a magnetic stirring table and the fixative was gently  stirred with a magnetic stirring bar.

      The  sliced  brain  was  then placed in  350  ml  of  Karnovsky’s containing  25%w/v glycerol in a special stirring apparatus  which  is illustrated  in Figure 10.  This  fixation/de-glycerolization  apparatus consisted of two plastic containers nested inside of each other atop a magnetic stirrer.  The inner container was perforated with numerous  3 mm holes and acted to protect the brain slices from the stir bar which continuously  circulated the fixative over the slices.   The  stirring reduced  the likelihood of delayed or poor fixation due to overlap  of slices  or stable zones of tissue water stratification.   (The  latter was a very real possibility owing to the high viscosity of the  25%w/v glycerol-containing Karnovsky’s.)

De-glycerolization of Samples

Figure 11: Following fixation, the tissues slices of all organs evaluated by microscopy were serially de-glycerolized using the scheme shown above. When all of the glycerol was unloaded from the tissues they were shipped in modified Karnovsky’s to outside laboratories for histological and electron microscopic imaging.

          To avoid osmotic shock all tissue samples were initially immersed in Karnovsky’s containing 25%w/v glycerol at room temperature and were subsequently  de-glycerolized  prior  to  staining  and  embedding   by stepwise    incubation    in   Karnovsky’s    containing   decreasing concentrations  of  glycerol  (see  Figure  11  for the de-glycerolization protocol).

Figure 12: Fixation and de-glycerolization set up employed to prepare tissues for subsequent microscopic examination. Karnofsky’s fixative (A) was added to the tissue slice fixation apparatus (B) and the tissue slices were then subjected to serial immersion in fixative bathing media containing progressively lower concentrations of glycerol (C) (see Figure 11).

      To  prepare  tissue sections from heart, liver,  and  kidney  for microscopy,  the  organs  were  first removed  en  bloc  to  a  beaker containing an amount of ice-cold fixative containing 25% w/v  glycerol sufficient  to cover the organ.  The organ was then removed to a  room temperature  work  surface at where 0.5 mm sections were made  with  a Stadie-Riggs microtome.  The microtome and blade were pre-wetted  with fixative,  and cut sections were irrigated from the microtome  chamber into  a beaker containing 200 ml of room-temperature fixative using  a plastic  squeeze-type  laboratory  rinse  bottle  containing  fixative solution.   Sections  were  deglycerolized using  the  same  procedure previously detailed for the other slices.

Osmication and Further Processing

At  the  conclusion  of de-glycerolization of  the  specimens  all tissues  were  separated into two groups; tissues to be  evaluated  by light microscopy, and those to be examined with transmission  electron microscopy.   Tissues for light microscopy were shipped  in  glycerol-free  modified  Karnovsky’s solution to American  Histolabs,  Inc.  in Rockville,  MD  for  paraffin  embedding,  sectioning,  mounting,  and staining.

Tissues   for  electron  microscopy  were  transported   to   the facilities  of the University of California at San Diego in  glycerol-free  Karnovsky’s at 1° to 2°C for osmication, Epon embedding, and  EM preparation of micrographs by Dr. Paul Farnsworth.

Due  to  concerns  about the osmication and  preparation  of  the material processed for electron microscopy by Farnsworth, tissues from the  same  animals  were also submitted  for  electron  microscopy  to Electronucleonics of Silver Spring, Maryland.


 Perfusion of FGP Animals

Blood  washout  was  rapid and complete in the  FGP  animals  and vascular  resistance  decreased  markedly  following  blood   washout.  Vascular  resistance increased steadily as the glycerol  concentration increased,  probably  as a result of the increasing viscosity  of  the perfusate.

Within   approximately  5  minutes  of  the  beginning   of   the cryoprotective ramp, bilateral ocular flaccidity was noted in the  FGP animals.   As  the perfusion proceeded, ocular  flaccidity  progressed until  the  eyes had lost approximately 30% to 50%  of  their  volume.

Gross  examination  of the eyes revealed that initial water  loss  was primarily  from the aqueous humor, with more significant  losses  from the posterior chamber of the eyes apparently not occurring until later in  the  course  of  perfusion.  Within 15 minutes  of  the  start  of glycerolization  the corneal surface became dimpled and irregular  and the eyes had developed a “caved-in” appearance.

Dehydration  was also apparent in the skin and  skeletal  muscles and  was  evidenced  by  a marked decrease  in  limb  girth,  profound muscular  rigidity,  cutaneous  wrinkling (Figure 11),  and  a  “waxy-leathery” appearance and texture to both cut skin and skeletal muscle.

Tissue water evaluations conducted on ileum, kidney, liver, lung,  and skeletal  muscle  confirmed  and  extended  the  gross   observations.

Figure 13: Cutaneous dehydration following glycerol perfusion is evidenced by washboard wrinkling of the thoraco-abdominal skin (CD). The ruffled appearance of the fur on the right foreleg (RF) is also an artifact of cutaneous dehydration. The sternotomy wound, venous cannula and the Weitlaner retractor (R) and the retractor blade (RB) holding open the chest wound are visible at the upper left of the photo.

Preliminary  observation suggest that water loss was in the  range  of 30%  to 40% in most tissues. As can be seen in Table III,  total  body water  losses  attributable  to dehydration, while  typically  not  as profound, were still in the range of 18% to 34%.  The gross appearance of  the heart suggested a similar degree of dehydration, as  evidenced by modest shrinkage and the development of a “pebbly” surface  texture and a somewhat translucent or “waxy” appearance.


 Total Water-Loss Associated With Glycerolization of the Cat


Animal    Pre-Perfusion    Post-Perfusion     Kg./     % Lost As     

  #          Weight Kg.        Weight        Water     Dehydration

 FGP-1          4.1                    3.6           2.46                 18

FGP-2          3.9                    3.1           2.34                 34

FGP-3          4.5                    3.9           2.70                 22

FGP-4          6.0                    5.0           3.60                 28

FIGP-1         3.4                    3.0           2.04                 18

FIGP-2         3.4                    3.2           2.04                   9

FIGP-3         4.32                 3.57          2.59                29


Figure 14: Cerebrocortical dehydration as a result of 4M glycerol perfusion. The cortical surface (CS) is retracted ~5-8 mm below the margin of the cranial bone (CB).

Examination  of  the cerebral hemispheres through the  burr  hole (Figure  14) and of the brain in the brain brainpan (Figure 19) revealed an estimated 30% to 50% reduction  in  cerebral volume,  presumably  as a result of osmotic dehydration  secondary  to glycerolization.   The cortices also had the “waxy”  amber  appearance previously observed as characteristic of glycerolized brains.

The  gross  appearance  of the kidneys,  spleen,  mesenteric  and subcutaneous  fat, pancreas, and reproductive organs  (where  present) were   unremarkable.   The  ileum  and  mesentery  appeared   somewhat dehydrated,  but  did  not  exhibit  the  waxy  appearance  that   was characteristic of muscle, skin, and brain.

Figure 15: Oxygen consumption was not apparently affected by glycerolization as can be seen in the data above from the perfusions of FGP-5 and FGP-5.

Oxygen  consumption (determined by measuring the  arterial/venous difference)  throughout  perfusion  was fairly constant  and  did  not appear to be significantly impacted by glycerolization, as can be seen Figure 12.

Perfusion of FIGP Animals

As previously noted, the ischemic animals had far lower flow rates at  the  same  perfusion  pressure as  FGP  animals  and  demonstrated incomplete  blood  washout.   Intravascular  clotting  was  serious  a barrier  to  adequate perfusion.   Post-thaw  dissection  demonstrated multiple  infarcted areas in virtually all organ systems; areas  where blood  washout  and  glycerolization were incomplete  or  absent.   In contrast  to  the even color and texture changes observed in  the  FGP animals,  the  skin of the FIGP animals  developed  multiple,  patchy, non-perfused   areas  which  were  clearly  outlined  by   surrounding, dehydrated, amber-colored glycerolized areas.

External  and internal examination of the brain and  spinal  cord revealed  surprisingly  good  blood washout  of  the  central  nervous system.  While grossly visible infarcted areas were noted, these  were relatively  few  and  were generally no larger than 2 mm to  3  mm  in diameter.   With few exceptions, the pial vessels were free  of  blood and appeared empty of gross emboli.  One striking difference which was consistently  observed  in  FIGP  animals  was  a  far  less  profound reduction  in brain volume during glycerolization (Figure  17).   This may  have  been due to a number of factors: lower flow  rates,  higher perfusion  pressures,  and the increased  capillary  permeability  and perhaps increased cellular permeability to glycerol.

Figure 16: The eye of an FGP animal following cryopreservation. The cornea has  become concave due to the glycerol-induced osmotic evacuation of the aqueous humor. The vitreous humor is completely obscured by the lens which has become white and opaque as a result of the precipitation of the crystallin proteins in the lens.

Whereas   edema   was   virtually   never   a   problem    during glycerolization  of  FGP  animals, edema was  universal  in  the  FIGP animals  after as little as 30 minutes of perfusion.  In  the  central nervous  system this edema was evidenced by a “rebound”  from  initial cerebral  shrinkage  to  frank  cerebral  edema,  with  the  cortices, restrained by the dura, often abutting or slightly projecting into the burr hole.   Marked  edema of the nictating membranes,  the  lung,  the intestines,  and  the  pancreas  was also a  uniform  finding  at  the conclusion  of cryoprotective perfusion.  The development of edema  in the central nervous system sometimes closely paralleled the  beginning of “rebound” of ocular volume and the development of ocular turgor and frank ocular edema.

Figure 17: The appearance of the brain of an FIGP animal following cryoprotective perfusion as seen through a craniotomy performed over the right temporal lobe. The cortical surface (CS) is retracted ~3-5 mm from the cranial bone (CB) and appears

In contrast to the relatively good blood washout observed in  the brain,  the  kidneys  of  FIGP animals had a  very  dark  and  mottled appearance.   While  some  areas (an estimated  20%  of  the  cortical surface) appeared to be blood-free, most of the organ remained  blood-filled throughout perfusion.  Smears of vascular fluid made from renal biopsies  which  were collected at the conclusion  of  perfusion  (for tissue  water determinations) revealed the presence of many  free  and irregularly clumped groups of crenated and normal-appearing red cells, further evidence of the incompleteness of blood washout.   Microscopic examination  of recirculating perfusate revealed some free, and a  few clumped  red  cells.   However, the concentration  was  low,  and  the perfusate  microhematocrit  was  unreadable  at  the  termination   of perfusion (i.e., less than 1%).

The  liver  of  FIGP  animals  appeared  uniformly   blood-filled throughout  perfusion,  and  did not exhibit even  the  partial  blood washout evidenced by the kidneys.  However, despite the absence of any grossly  apparent blood washout, tissue water evaluations in one  FIGP animal  were  indicative  of  osmotic dehydration  and  thus  of  some perfusion.

The mesenteric, pancreatic, splanchnic, and other small  abdominal vessels  were  largely free of blood by the conclusion  of  perfusion.  However,  blood-filled  vessels  were not  uncommon,  and  examination during   perfusion   of   mesenteric   vessels   performed   with   an ophthalmoscope  at 20x magnification revealed stasis in  many  smaller vessels, and irregularly shaped small clots or agglutinated masses  of red  cells in most of the mesenteric vessels.   Nevertheless,  despite the   presence  of  massive  intravascular  clotting,  perfusion   was possible, and significant amounts of tissue water appear to have  been exchanged for glycerol.

One  immediately  apparent difference between the  FGP  and  FIGP animals  was  the  accumulation in the lumen of  the  ileum  of  large amounts  of  perfusate  or perfusate  ultrafiltrate  by  the  ischemic animals.  Within approximately 10 minutes of the start of reperfusion, the  ileum  of the ischemic animals that had  been  laparotomized  was noticed  to  be  accumulating fluid.  By the  end  of  perfusion,  the stomach  and the small and large bowel had become massively  distended with  perfusate.   Figure  14 shows both FIGP and  FGP  ileum  at  the conclusion  of glycerol perfusion.  As can be clearly seen,  the  FIGP intestine  is markedly distended.  Gross examination of the  gut  wall was   indicative  of  tissue-wall  edema  as  well   as   intraluminal accumulation  of  fluid.  Often by the end of perfusion, the  gut  had become  so  edematous  and  distended  with  perfusate  that  it   was impossible  to completely close the laparotomy  incision.   Similarly, gross  examination of gastric mucosa revealed severe erosion with  the mucosa being very friable and frankly hemorrhagic.

Escape  of  perfusate/stomach contents from the  mouth  (purging) which occurs during perfusion in ischemically injured human suspension patients did not occur, perhaps due to greater post-arrest  competence of the gastroesophageal valve in the cat.

Oxygen  consumption  in  the two ischemic cats in  which  it  was measured  was dramatically impacted, being only 30% to 50% of  control and deteriorating throughout the course of perfusion (Figure 12).


The  most striking change noted upon thawing of the  animals  was the presence of multiple fractures in all organ systems.  As had  been previously noted in human cryopreservation patients, fracturing  was most pronounced in delicate, high flow organs which are poorly  fiber-reinforced.   An exception to this was the large arteries such as  the aorta, which were heavily fractured.

Fractures  were most serious in the brain, spleen, pancreas,  and kidney.   In these organs fractures would often completely  divide  or sever  the  organ  into one or more discrete  pieces.   Tougher,  more fiber-reinforced tissues such as myocardium, skeletal muscle, and skin were less affected by fracturing; there were fewer fractures and  they were smaller and less frequently penetrated the full thickness of  the organ.

Figure 18: All of the animals in the study exhibited fractures of the white matter that transected the brain between the cerebellum and the cerebral cortices. Similarly, the spinal cord was invariable severed by fractures in several locations and exhibited the appearance of a broken candle stick. The yellow box encloses a sampling area used to determine brain water content.

Figure 19: Deep fracture of the left occipital cortex. Note the absence oif fracturing in the adjacent skeletal muscle (M) observed in FGP-1. Note that the brain appears shrunken and retracted in the brainpan.

Figure 20: Appearance of the brain after removal from the brainpan. There is a massive fracture of thew right frontal=temporal cortex which penetrates the full thickness of the cerebral hemisphere to expose the right cerebral ventricle observed in FIGP-2. The cortex appears buff colored and gives the appearance of being incompletely washed out of blood.

Figure 21: Typical fracture sites in the brain (arrows and yellow shading). The olfactory cortices and the brainstem were invariably completely severed by fractures.

In both FGP and FIGP animals the brain was particularly  affected by  fracturing  (Figures 18, 19 & 22) and  it  was not uncommon to  find  fractures  in  the cerebral hemispheres penetrating through to the ventricles as seen  in Figure  20, or to find most of both cerebral hemispheres and the  mid-brain  completely  severed from the cerebellum by a  fracture  (Figure 18).  Similarly, the cerebellum was uniformly severed from the medulla at the foramen magnum as were the olfactory lobes, which were  usually retained  within  the olfactory fossa with severing  fractures  having occurred at about the level of the transverse ridge.  The spinal  cord was  invariably transversely fractured at intervals of 5 mm to  15  mm over  its  entire  length (Figure 21).  Bisecting CNS fractures  were  most  often observed  to  occur  transversely  rather  than  longitudinally.   In general,  roughly  cylindrical structures such as  arteries,  cerebral hemispheres, spinal cord, lungs, and so on are completely severed only by transverse fractures.  Longitudinal fractures tend to be shorter in length and shallower in depth, although there were numerous exceptions to this generalization.

Figure 22: Crisp olfactory lobe fracture which also partially penetrated the pia matter in FGG-4.

In  ischemic animals the kidney was usually grossly fractured  in one  or  two locations (Figure 25).  By  contrast,  the  well-perfused kidneys of the non-ischemic FGP group exhibited multiple fractures,  as can  be  seen in Figure 24.  A similar pattern was observed  in  other organ  systems  as well; the non-ischemic animals  experienced  greater fracturing injury than the ischemic animals, presumably as a result of the   higher   terminal  glycerol  concentrations  achieved   in   the non-ischemic group.

Figure 23: Appearance of a fractured kidney before removal of the renal capsule. The renal capsule has only one fracture, however when the capsule is removed, the extensive fracturing of the renal cortex and medulla become evident (Figure 24, below).

Figure 24: Fractured renal cortex from FGP-1 after removal of the renal capsule. The renal cortex is extensively fractured, the renal medulla slightly less so. Note the uniform, tan/light brown color of the cortex indicating complete blood washout and the absence of red cell trapping.

Cannulae  and attached stopcocks where they were externalized  on the  animals  were  also frequently  fractured.   In  particular,  the polyethylene pressure-monitoring catheters were usually fractured into many  small  pieces.   The  extensive  fracture  damage  occurring  in cannulae,  stopcocks, and catheters was almost certainly a  result  of handling  the animals after cooling to deep subzero  temperatures,  as this  kind of fracturing was not observed in these items upon  cooling to  liquid nitrogen temperature (even at moderate rates).  It is  also possible that repeated transfer of the animals after cooling to liquid nitrogen  temperature may have contributed to fracturing  of  tissues, although the occurrence of fractures in organs and bulk quantities  of water-cryoprotectant  solutions  in the absence of  handling  is  well documented in the literature (12, 13).

There were subtle post-thaw alterations in the appearance of  the tissues of all three groups of animals.  There was little if any fluid present  in the vasculature and yet the tissues exhibited  oozing  and “drip”  (similar to that observed in the muscle of frozen-thawed  meat and  seafood)  when cut.  This was most pronounced  in  the  straight-frozen  animal.  The tissues (especially in the ischemic  group)  also had  a somewhat pulpy texture on handling as contrasted with  that  of unfrozen,  glycerolized  tissues  (i.e.,  those  handled  during  pre-freezing  sampling for water content).  This was most in  evidence  by the accumulation during the course of dissection of small particles of what appeared to be tissue substance with a starchy appearance and  an oily  texture on gloves and instruments .  This phenomenon  was  never observed  when handling fresh tissue or glycerolized tissue  prior  to freezing and thawing.

There were marked differences in the color of the tissues between the three groups of animals as well.  This was most pronounced in  the straight-frozen  control  where the color of almost  every  organ  and tissue examined had undergone change.  Typically the color of  tissues in  the  straight-frozen animal was darker, and white  or  translucent tissues such as the brain or mesentery were discolored with hemoglobin released from lysed red cells.

Figure 25: The (ventral) dependent and dorsal (less dependent) surfaces of the right kidney from FIGP-1. There is extensive mottling evidencing incomplete blood washout despite perfusion with many liters of CPA solution. Fracturing is much less extensive than that observed in FGP animals not subjected to prolonged periods of post-arrest ischemia. Note the pink colored “drip” from the organ that is present on sectioning board.

Figure 26: Appearance of the kidney from FIGP-1 shown above on cross-section. The renal medulla appears congested and blood filled.

The FGP and FIGP groups did not experience the profound post-thaw changes  in tissue color experienced by the straight-frozen  controls, although  the  livers and kidneys of the FIGP  animals  appeared  very dark, even when contrasted with their pre-perfusion color as  observed in those animals laparotomized for tissue water evaluation.



]]> 2